Manipulate the default connectome provided with TVB to see how structural lesions effect brain dynamics. In this hands-on session you will insert lesions into the connectome within the TVB graphical user interface. Afterwards the modified connectome will be used for simulations and the resulting activity will be analysed using functional connectivity.
This lecture covers structured data, databases, federating neuroscience-relevant databases, ontologies.
Introduction to reproducible research. The lecture provides an overview of the core skills and practical solutions required to practice reproducible research. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Introduction to the Mathematics chapter of Datalabcc's "Foundations in Data Science" series.
Primer on elementary algebra
Primer on systems of linear equations
How calculus relates to optimization
Ion channels and the movement of ions across the cell membrane.
Action potentials, and biophysics of voltage-gated ion channels.
Voltage-gating kinetics of sodium and potassium channels.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Action potential initiation and propagation.
Long-range inhibitory connections in the brain, with examples from three different systems.
The "connectome" is a term, coined in the past decade, that has been used to describe more than one phenomenon in neuroscience. This lecture explains the basics of structural connections at the micro-, meso- and macroscopic scales.