Skip to main content

The simulation of the virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved results in clinics. The fundamentals of epilepsy are explained. On this basis, the concept of epilepsy simulation is developed. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.

Difficulty level: Beginner
Duration: 1:28:53
Speaker: : Julie Courtiol

Learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper: On the Nature of Seizure Dynamics which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.

Difficulty level: Beginner
Duration: 4:44
Speaker: : Paul Triebkorn

Lecture on the most important concepts in software engineering

Difficulty level: Beginner
Duration: 32:59
Speaker: : Jeff Muller

Introductory presentation on how data science can help with scientific reproducibility.

Difficulty level: Beginner
Duration:
Speaker: : Michel Dumontier

How does the brain learn? This lecture discusses the roles of development and adult plasticity in shaping functional connectivity.

Difficulty level: Beginner
Duration: 1:08:45
Speaker: : Clay Reid

Introduction to the course Cellular Mechanisms of Brain Function.

Difficulty level: Beginner
Duration: 12:20
Speaker: : Carl Petersen

Introduction to the course Cellular Mechanisms of Brain Function.

Difficulty level: Beginner
Duration: 12:20
Speaker: : Carl Petersen

Ion channels and the movement of ions across the cell membrane.

Difficulty level: Beginner
Duration: 25:51
Speaker: : Carl Petersen

Action potential initiation and propagation.

Difficulty level: Beginner
Duration: 09:13
Speaker: : Carl Petersen

Synaptic transmission and neurotransmitters

Difficulty level: Beginner
Duration: 28:22
Speaker: : Carl Petersen

Neurodata Without Borders (NWB) is a data standard for neurophysiology that provides neuroscientists with a common standard to share, archive, use, and build common analysis tools for neurophysiology data.

Difficulty level: Beginner
Duration: 1:11
Speaker: : Ben Dichter

Neuroscience Information Exchange (NIX) Format data model allows storing fully annotated scientific datasets, i.e. the data together with rich metadata and their relations in a consistent, comprehensive format. Its aim is to achieve standardization by providing a common data structure and APIs for a multitude of data types and use cases, focused on but not limited to neuroscience. In contrast to most other approaches, the NIX approach is to achieve this flexibility with a minimum set of data model elements.

Difficulty level: Beginner
Duration: 1:03
Speaker: : Thomas Wachtler

This lecture provides users with an introduction to how to get the most out of this course

Difficulty level: Beginner
Duration: 12:35
Speaker: : Ben Dichter

NWB: An ecosystem for neurophysiology data standardization

Difficulty level: Beginner
Duration: 29:53
Speaker: : Oliver Ruebel

This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases

Difficulty level: Beginner
Duration: 1:02:29
Speaker: : Nir Giladi

This lecture focuses on how the immune system can target and attack the nervous system to produce autoimmune responses that may result in diseases such as multiple sclerosis, neuromyelitis and lupus cerebritis manifested by motor, sensory, and cognitive impairments. Despite the fact that the brain is an immune-privileged site, autoreactive lymphocytes producing proinflammatory cytokines can cause active brain inflammation, leading to myelin and axonal loss.

Difficulty level: Beginner
Duration: 37:36
Speaker: : Anat Achiron