Manipulate the default connectome provided with TVB to see how structural lesions effect brain dynamics. In this hands-on session you will insert lesions into the connectome within the TVB graphical user interface. Afterwards the modified connectome will be used for simulations and the resulting activity will be analysed using functional connectivity.
Lecture on the most important concepts in software engineering
This lecture covers an introduction to neuroinformatics and its subfields, the content of the short course and future neuroinformatics applications.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Introduction to the course Cellular Mechanisms of Brain Function.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Introduction to the course Cellular Mechanisms of Brain Function.
Ion channels and the movement of ions across the cell membrane.
Spatiotemporal dynamics of the membrane potential.
Action potentials, and biophysics of voltage-gated ion channels.
Voltage-gating kinetics of sodium and potassium channels.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Action potential initiation and propagation.
Neurotransmitter release in the presynaptic specialization.
Synaptic modulation through diffusing neurotransmitters.
Glutamatergic transmission.
Glutamate release after an action potential. Resulting post-synaptic potentials in a biophysically realistic situation.
Glutamatergic excitatory neuronal circuits.
Dendritic spines and their function.
GABAergic inhibition and its receptors.