The probability of a hypothesis, given data.
Why math is useful in data science.
Why statistics are useful for data science.
Statistics is exploring data.
Graphical data exploration
Numerical data exploration
Simple description of statistical data.
Basics of hypothesis testing.
This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network.
Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.
Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.
Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.
This lecture covers structured data, databases, federating neuroscience-relevant databases, ontologies.
Introduction to neurons, synaptic transmission, and ion channels.
2nd part of the lecture. Introduction to cell receptors and signalling cascades
Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.
Introduction to the origin and differentiation of myelinating cell types, molecular mechanisms defining onset and progression of myelination, demyelination and remyelination after injury.
This lecture covers: integrating information within a network, modulating and controlling networks, functions and dysfunctions of hippocampal networks, and the integrative network controlling sleep and arousal.
This lecture focuses on the comprehension of nociception and pain sensation. It highlights how the somatosensory system and different molecular partners are involved in nociception and how nociception and pain sensation are studied in rodents and humans and the development of pain therapy.
An overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the Central Nervous System.