The probability of a hypothesis, given data.
Why math is useful in data science.
Why statistics are useful for data science.
Statistics is exploring data.
Graphical data exploration
Numerical data exploration
Simple description of statistical data.
Basics of hypothesis testing.
This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network.
Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.
Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.
Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.
This lecture covers structured data, databases, federating neuroscience-relevant databases, ontologies.
This lecture provides an overview of depression (epidemiology and course of the disorder), clinical presentation, somatic co-morbidity, and treatment options.
Part 1 of 2 of a tutorial on statistical models for neural data
What is the difference between attention and consciousness? This lecture describes the scientific meaning of consciousness, journeys on the search for neural correlates of visual consciousness, and explores the possibility of consciousness in other beings and even non-biological structures.
Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.
An overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the Central Nervous System.