Skip to main content

This lightning talk gives an outline of the DataLad ecosystem for large-scale collaborations, and how DataLad addresses challenges that may arise in such research cooperations.

Difficulty level: Beginner
Duration: 2:54

This brief talk covers an analysis technique for multi-band, multi-echo fMRI data, applying a denoising framework which can be used in an automated pipeline.  

Difficulty level: Beginner
Duration: 4:45
Speaker: : David Abbott

In this lightning talk, you will learn about BrainGlobe, an initiative which exists to facilitate the development of interoperable Python-based tools for computational neuroanatomy.

Difficulty level: Beginner
Duration: 3:33

This is the second of three lectures around current challenges and opportunities facing neuroinformatic infrastructure for handling sensitive data. 

Difficulty level: Beginner
Duration: 48:26
Speaker: : Michael Schirner

This lesson gives a quick introduction to the rest of this course, Research Workflows for Collaborative Neuroscience

Difficulty level: Beginner
Duration: 3:23
Speaker: : Dimitri Yatsenko

This lesson provides an overview of how to conceptualize, design, implement, and maintain neuroscientific pipelines in via the cloud-based computational reproducibility platform Code Ocean. 

Difficulty level: Beginner
Duration: 17:01
Speaker: : David Feng

This lesson provides an overview of how to construct computational pipelines for neurophysiological data using DataJoint.

Difficulty level: Beginner
Duration: 17:37
Speaker: : Dimitri Yatsenko

This talk describes approaches to maintaining integrated workflows and data management schema, taking advantage of the many open source, collaborative platforms already existing.

Difficulty level: Beginner
Duration: 15:15
Speaker: : Erik C. Johnson

This hands-on tutorial walks you through DataJoint platform, highlighting features and schema which can be used to build robost neuroscientific pipelines. 

Difficulty level: Beginner
Duration: 26:06
Speaker: : Milagros Marin

This lesson consists of a panel discussion, wrapping up the INCF Neuroinformatics Assembly 2023 workshop Research Workflows for Collaborative Neuroscience

Difficulty level: Beginner
Duration: 25:33
Speaker: :

This lesson provides an introduction to the DataLad, a free and open source distributed data management system that keeps track of your data, creates structure, ensures reproducibility, supports collaboration, and integrates with widely used data infrastructure.

Difficulty level: Beginner
Duration: 22:56

This lesson introduces several open science tools like Docker and Apptainer which can be used to develop portable and reproducible software environments. 

Difficulty level: Beginner
Duration: 17:22
Speaker: : Joanes Grandjean

This lecture provides a detailed description of how to incorporate HED annotation into your neuroimaging data pipeline. 

Difficulty level: Beginner
Duration: 33:36
Speaker: : Dung Truong

This talk provides an overview of the FAIR-aligned efforts of MATLAB and MathWorks, from the technological building blocks to the open science coordination involved in facilitating greater transparency and efficiency in neuroscience and neuroinformatics. 

Difficulty level: Beginner
Duration: 15:41
Speaker: : Vijay Iyer

This lesson aims to define computational neuroscience in general terms, while providing specific examples of highly successful computational neuroscience projects. 

Difficulty level: Beginner
Duration: 59:21
Speaker: : Alla Borisyuk

In this lesson, you will learn how to understand data management plans and why data sharing is important. 

Difficulty level: Beginner
Duration: 44:24
Speaker: : Jenny Muilenburg

This lecture covers a wide range of aspects regarding neuroinformatics and data governance, describing both their historical developments and current trajectories. Particular tools, platforms, and standards to make your research more FAIR are also discussed.

Difficulty level: Beginner
Duration: 54:58
Speaker: : Franco Pestilli

This lesson gives an in-depth description of scientific workflows, from study inception and planning to dissemination of results. 

Difficulty level: Beginner
Duration: 44:41

Computer arithmetic is necessarily performed using approximations to the real numbers they are intended to represent, and consequently it is possible for the discrepancies between the actual solution and the approximate solutions to diverge, i.e. to become increasingly different. This lecture focuses on how this happens and techniques for reducing the effects of these phenomena and discuss systems which are chaotic.

Difficulty level: Beginner
Duration: 36:56
Speaker: : David Lester