Skip to main content

The simulation of the virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved results in clinics. The fundamentals of epilepsy are explained. On this basis, the concept of epilepsy simulation is developed. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.

Difficulty level: Beginner
Duration: 1:28:53
Speaker: : Julie Courtiol

Learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper: On the Nature of Seizure Dynamics which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.

Difficulty level: Beginner
Duration: 4:44
Speaker: : Paul Triebkorn

Lecture on the most important concepts in software engineering

Difficulty level: Beginner
Duration: 32:59
Speaker: : Jeff Muller

This lecture covers structured data, databases, federating neuroscience-relevant databases, ontologies. 

Difficulty level: Beginner
Duration: 1:30:45
Speaker: : Maryann Martone

This primer on optogenetics primer discusses how to manipulate neuronal populations with light at millisecond resolution and offers possible applications such as curing the blind and "playing the piano" with cortical neurons.

Difficulty level: Beginner
Duration: 59:06
Speaker: : Clay Reid

This lecture covers describing and characterizing an input-output relationship.

Difficulty level: Beginner
Duration: 1:35:33

Part 1 of 2 of a tutorial on statistical models for neural data

Difficulty level: Beginner
Duration: 1:45:48
Speaker: : Jonathan Pillow

Part 2 of 2 of a tutorial on statistical models for neural data.

Difficulty level: Beginner
Duration: 1:50:31
Speaker: : Jonathan Pillow

From the retina to the superior colliculus, the lateral geniculate nucleus into primary visual cortex and beyond, this lecture gives a tour of the mammalian visual system highlighting the Nobel-prize winning discoveries of Hubel & Wiesel.

Difficulty level: Beginner
Duration: 56:31
Speaker: : Clay Reid

From Universal Turing Machines to McCulloch-Pitts and Hopfield associative memory networks, this lecture explains what is meant by computation.

Difficulty level: Beginner
Duration: 55:27
Speaker: : Christof Koch

Ion channels and the movement of ions across the cell membrane.

Difficulty level: Beginner
Duration: 25:51
Speaker: : Carl Petersen

The ionic basis of the action potential, including the Hodgkin Huxley model. 

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen

Introduction to the course Cellular Mechanisms of Brain Function.

Difficulty level: Beginner
Duration: 12:20
Speaker: : Carl Petersen

The ionic basis of the action potential, including the Hodgkin Huxley model. 

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen

Introduction to the course Cellular Mechanisms of Brain Function.

Difficulty level: Beginner
Duration: 12:20
Speaker: : Carl Petersen

The composition of the cell membrane.

Difficulty level: Beginner
Duration: 14:46
Speaker: : Carl Petersen

Spatiotemporal dynamics of the membrane potential.

Difficulty level: Beginner
Duration: 19:14
Speaker: : Carl Petersen

Action potential initiation and propagation.

Difficulty level: Beginner
Duration: 09:13
Speaker: : Carl Petersen

Synaptic transmission and neurotransmitters

Difficulty level: Beginner
Duration: 28:22
Speaker: : Carl Petersen

Neurotransmitter release in the presynaptic specialization.

Difficulty level: Beginner
Duration: 21:36
Speaker: : Carl Petersen