Skip to main content
Course:

KnowledgeSpace is a community-based encyclopedia that links brain research concepts to data, models, and literature. It provides users with access to anatomy, gene expression, models, morphology, and physiology data from over 15 different neuroscience data/model repositories, such as Allen Institute for Brain Science and the Human Brain Project.

Difficulty level: Beginner
Duration: 0:58
Speaker: : Tom Gillespie

This talk highlights a set of platform technologies, software, and data collections that close and shorten the feedback cycle in research. 

Difficulty level: Beginner
Duration: 57:52
Speaker: : Satrajit Ghosh

The Identifiers.org system is a central infrastructure for findable, accessible, interoperable and re-usable (FAIR) data. It provides a range of services to generate, resolve and validate persistent Compact Identifiers to promote the citability of individual data providers and integration with e-infrastructures.

Difficulty level: Beginner
Duration: 36:41

EEGLAB is an interactive Matlab toolbox for processing continuous and event-related EEG, MEG and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data. EEGLAB runs under Linux, Unix, Windows, and Mac OS X.

Difficulty level: Beginner
Duration: 15:32
Speaker: : Arnaud Delorme
Difficulty level: Beginner
Duration: 9:20
Speaker: :
Difficulty level: Beginner
Duration: 8:30
Speaker: : Arnaud Delorme
Difficulty level: Beginner
Duration: 13:01
Speaker: : Arnaud Delorme

Introduction to reproducible research. The lecture provides an overview of the core skills and practical solutions required to practice reproducible research. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:25:17
Speaker: : Fernando Perez