Skip to main content

This lesson provides an overview of how to conceptualize, design, implement, and maintain neuroscientific pipelines in via the cloud-based computational reproducibility platform Code Ocean. 

Difficulty level: Beginner
Duration: 17:01
Speaker: : David Feng

This lesson provides an overview of how to construct computational pipelines for neurophysiological data using DataJoint.

Difficulty level: Beginner
Duration: 17:37
Speaker: : Dimitri Yatsenko

This hands-on tutorial walks you through DataJoint platform, highlighting features and schema which can be used to build robost neuroscientific pipelines. 

Difficulty level: Beginner
Duration: 26:06
Speaker: : Milagros Marin

This lesson provides an introduction to the DataLad, a free and open source distributed data management system that keeps track of your data, creates structure, ensures reproducibility, supports collaboration, and integrates with widely used data infrastructure.

Difficulty level: Beginner
Duration: 22:56

This lesson introduces several open science tools like Docker and Apptainer which can be used to develop portable and reproducible software environments. 

Difficulty level: Beginner
Duration: 17:22
Speaker: : Joanes Grandjean

This lecture provides a detailed description of how to incorporate HED annotation into your neuroimaging data pipeline. 

Difficulty level: Beginner
Duration: 33:36
Speaker: : Dung Truong

This lecture covers a wide range of aspects regarding neuroinformatics and data governance, describing both their historical developments and current trajectories. Particular tools, platforms, and standards to make your research more FAIR are also discussed.

Difficulty level: Beginner
Duration: 54:58
Speaker: : Franco Pestilli

This lesson provides a short reel on who we are, what we're doing and why we're doing it.

Difficulty level: Beginner
Duration: 2:38
Speaker: :

In this webinar, educators currently implementing collaborative annotation in their classrooms discuss their experiences with collaborative annotation and using Hythothes.is and Canvas App.

Difficulty level: Beginner
Duration: 53:14
Speaker: : Jeremy Dean

This tutorial provides an overview of how to use the feature of Hypothes.is.

Difficulty level: Beginner
Duration: 09:30
Speaker: :

This lesson gives a brief overview of the Hypothes.is functionality from an end user's perspective.

Difficulty level: Beginner
Duration: 5:36
Speaker: : Heather Staines

This video will teach you the basics of navigating the Open Science Framework and creating your first projects.

Difficulty level: Beginner
Duration: 2:11
Speaker: :

This webinar walks you through the basics of creating an OSF project, structuring it to fit your research needs, adding collaborators, and tying your favorite online tools into your project structure.

Difficulty level: Beginner
Duration: 55:02
Speaker: : Ian Sullivan

This webinar will introduce how to use the Open Science Framework (OSF) in a classroom setting.

Difficulty level: Beginner
Duration: 32:01

This lesson provides instruction on how to organize related projects with OSF features such as links, forks, and templates.

Difficulty level: Beginner
Duration: 51:14
Speaker: : Ian Sullivan

This webinar will introduce the integration of JASP Statistical Software with the Open Science Framework (OSF).

Difficulty level: Beginner
Duration: 30:56
Speaker: : Alexander Etz

This lesson describes the value of version control, as well as how to do so with your own files and data on OSF. 

Difficulty level: Beginner
Duration: 22:07

This lecture focuses on where and how Jupyter notebooks can be used most effectively for education.

Difficulty level: Beginner
Duration: 34:53
Speaker: : Thomas Kluyver

In this lesson you will learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper On the Nature of Seizure Dynamics, which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.

Difficulty level: Beginner
Duration: 4:44
Speaker: : Paul Triebkorn
Course:

The Mouse Phenome Database (MPD) provides access to primary experimental trait data, genotypic variation, protocols and analysis tools for mouse genetic studies. Data are contributed by investigators worldwide and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD ensures rigorous curation of phenotype data and supporting documentation using relevant ontologies and controlled vocabularies. As a repository of curated and integrated data, MPD provides a means to access/re-use baseline data, as well as allows users to identify sensitized backgrounds for making new mouse models with genome editing technologies, analyze trait co-inheritance, benchmark assays in their own laboratories, and many other research applications. MPD’s primary source of funding is NIDA. For this reason, a majority of MPD data is neuro- and behavior-related.

Difficulty level: Beginner
Duration: 55:36
Speaker: : Elissa Chesler