Skip to main content

This lecture contains an overview of the Australian Electrophysiology Data Analytics Platform (AEDAPT), how it works, how to scale it, and how it fits into the FAIR ecosystem.

Difficulty level: Beginner
Duration: 18:56
Speaker: : Tom Johnstone

This lecture discusses how to standardize electrophysiology data organization to move towards being more FAIR.

Difficulty level: Beginner
Duration: 15:51

This lecture will provide an overview of the INCF Training Suite, a collection of tools that embraces the FAIR principles developed by members of the INCF Community. This will include an overview of TrainingSpace, Neurostars, and KnowledgeSpace.

Difficulty level: Beginner
Duration: 09:50
Speaker: : Mathew Abrams

This lecture contains an overview of the China-Cuba-Canada neuroinformatics ecosystem for Quantitative Tomographic EEG Analysis (qEEGt).

Difficulty level: Beginner
Duration: 12:56

This lecture covers the ethical implications of the use of pharmaceuticals to enhance brain functions and was part of the Neuro Day Workshop held by the NeuroSchool of Aix Marseille University.

Difficulty level: Beginner
Duration: 1:09:29
Speaker: : Eric Racine

This lesson contains the first part of the lecture Data Science and Reproducibility. You will learn about the development of data science and what the term currently encompasses, as well as how neuroscience and data science intersect. 

Difficulty level: Beginner
Duration: 32:18
Speaker: : Ariel Rokem

This lecture gives an introduction to the FAIR (findability, accessibility, interoperability, and reusability) science principles and examples of their application in neuroscience research. 

Difficulty level: Beginner
Duration: 55:57

The lecture provides an overview of the core skills and practical solutions required to practice reproducible research.

Difficulty level: Beginner
Duration: 1:25:17
Speaker: : Fernando Perez

This lecture covers the description and brief history of data science and its use in neuroinformatics.

Difficulty level: Beginner
Duration: 11:15
Speaker: : Ariel Rokem
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman

This lesson provides a hands-on tutorial for generating simulated brain data within the EBRAINS ecosystem. 

Difficulty level: Beginner
Duration: 32:58
Speaker: : Jil Meier