FAIR principles and methods currently in development for assessing FAIRness.
The tutorial is intended primarily for beginners, but it will also beneficial to experimentalists who understand electroencephalography and event related techniques, but need additional knowledge in annotation, standardization, long-term storage and publication of data.
Introduction to the first phases of EEG/ERP data lifecycle
Introduction to reproducible research. The lecture provides an overview of the core skills and practical solutions required to practice reproducible research. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Introductory presentation on how data science can help with scientific reproducibility.
This lecture provides an overview of depression (epidemiology and course of the disorder), clinical presentation, somatic co-morbidity, and treatment options.
A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.