Computational models provide a framework for integrating data across spatial scales and for exploring hypotheses about the biological mechanisms underlying neuronal and network dynamics. However, as models increase in complexity, additional barriers emerge to the creation, exchange, and re-use of models. Successful projects have created standards for describing complex models in neuroscience and provide open source tools to address these issues. This lecture provides an overview of these projects and make a case for expanded use of resources in support of reproducibility and validation of models against experimental data.
KnowledgeSpace is a community-based encyclopedia that links brain research concepts to data, models, and literature. It provides users with access to anatomy, gene expression, models, morphology, and physiology data from over 15 different neuroscience data/model repositories, such as Allen Institute for Brain Science and the Human Brain Project.
The Identifiers.org system is a central infrastructure for findable, accessible, interoperable and re-usable (FAIR) data. It provides a range of services to generate, resolve and validate persistent Compact Identifiers to promote the citability of individual data providers and integration with e-infrastructures.
Introduction to the FAIR Principles and examples of applications of the FAIR Principles in neuroscience. This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.
A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This tutorial was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Introduction to reproducible research. The lecture provides an overview of the core skills and practical solutions required to practice reproducible research. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.
Introduction to the principal of anatomical organization of neural systems in the human brain and spinal cord that mediate sensation, integrate signals, and motivate behavior.
This lecture focuses on the comprehension of nociception and pain sensation. It highlights how the somatosensory system and different molecular partners are involved in nociception and how nociception and pain sensation are studied in rodents and humans and the development of pain therapy.
This video will teach you the basics of navigating the OSF, a free research management tool, and creating your first projects.