Skip to main content

This lesson provides an introduction to the lifecycle of EEG/ERP data, describing the various phases through which these data pass, from collection to publication.

Difficulty level: Beginner
Duration: 35:30

In this lesson you will learn about experimental design for EEG acquisition, as well as the first phases of the EEG/ERP data lifecycle. 

Difficulty level: Beginner
Duration: 30:04

This lesson provides an overview of the current regulatory measures in place regarding experimental data security and privacy. 

Difficulty level: Beginner
Duration: 31:00

In this lesson, you will learn the appropriate methods for collection of both data and associated metadata during EEG experiments.

Difficulty level: Beginner
Duration: 29:14

This lesson goes over methods for managing EEG/ERP data after it has been collected, from annotation to publication. 

Difficulty level: Beginner
Duration: 39:25

In this final lesson of the course, you will learn broadly about EEG signal processing, as well as specific applications which make this kind of brain signal valuable to researchers and clinicians. 

Difficulty level: Beginner
Duration: 34:51

This lecture contains an overview of the Australian Electrophysiology Data Analytics Platform (AEDAPT), how it works, how to scale it, and how it fits into the FAIR ecosystem.

Difficulty level: Beginner
Duration: 18:56
Speaker: : Tom Johnstone

This module covers many of the types of non-invasive neurotech and neuroimaging devices including electroencephalography (EEG), electromyography (EMG), electroneurography (ENG), magnetoencephalography (MEG), and more. 

Difficulty level: Beginner
Duration: 13:36
Speaker: : Harrison Canning
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman

This hands-on tutorial walks you through DataJoint platform, highlighting features and schema which can be used to build robost neuroscientific pipelines. 

Difficulty level: Beginner
Duration: 26:06
Speaker: : Milagros Marin

This lesson gives an introductory presentation on how data science can help with scientific reproducibility.

Difficulty level: Beginner
Duration:
Speaker: : Michel Dumontier

This lecture discusses how FAIR practices affect personalized data models, including workflows, challenges, and how to improve these practices.

Difficulty level: Beginner
Duration: 13:16
Speaker: : Kelly Shen

This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.

Difficulty level: Beginner
Duration: 15:14

This lecture covers visualizing extracellular neurotransmitter dynamics

Difficulty level: Beginner
Duration: 23:20

This module explains how neurons come together to create the networks that give rise to our thoughts. The totality of our neurons and their connection is called our connectome. Learn how this connectome changes as we learn, and computes information.

Difficulty level: Beginner
Duration: 7:13
Speaker: : Harrison Canning

This lesson discusses both state-of-the-art detection and prevention schema in working with neurodegenerative diseases. 

Difficulty level: Beginner
Duration: 1:02:29
Speaker: : Nir Giladi

This lecture provides an introduction to the study of eye-tracking in humans. 

Difficulty level: Beginner
Duration: 34:05
Speaker: : Ulrich Ettinger

This lesson continues with the second workshop on reproducible science, focusing on additional open source tools for researchers and data scientists, such as the R programming language for data science, as well as associated tools like RStudio and R Markdown. Additionally, users are introduced to Python and iPython notebooks, Google Colab, and are given hands-on tutorials on how to create a Binder environment, as well as various containers in Docker and Singularity.

Difficulty level: Beginner
Duration: 1:16:04

This lesson contains both a lecture and a tutorial component. The lecture (0:00-20:03 of YouTube video) discusses both the need for intersectional approaches in healthcare as well as the impact of neglecting intersectionality in patient populations. The lecture is followed by a practical tutorial in both Python and R on how to assess intersectional bias in datasets. Links to relevant code and data are found below. 

Difficulty level: Beginner
Duration: 52:26

In this hands-on session, you will learn how to explore and work with DataLad datasets, containers, and structures using Jupyter notebooks. 

Difficulty level: Beginner
Duration: 58:05