Tutorial on how to use TVB-NEST toolbox on your local computer. Authors: D. Perdikis, L. Domide, M. Schirner, P. Ritter
Tutorial on how to perform multi-scale simulation of Alzheimer's disease on The Virtual Brain Simulation Platform. Authors: L. Stefanovski, P. Triebkorn, M.A. Diaz-Cortes, A. Solodkin, V. Jirsa, A.R. McIntosh, P. Ritter
A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.
How genetics can contribute to our understanding of psychiatric phenotypes.
An overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the Central Nervous System.
Introduction to simple spiking neuron models.
Introduction to simple spiking neuron models.
Introductory presentation on how data science can help with scientific reproducibility.
Audio slides presentation to accompany the paper titled: An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. Authors: M. Schirner, S. Rothmeier, V. Jirsa, A.R. McIntosh, P. Ritter.
This lecture is part of the Neuromatch Academy (NMA), a massive, interactive online summer school held in 2020 that provided participants with experiences spanning from hands-on modeling experience to meta-science interpretation skills across just about everything that could reasonably be included in the label "computational neuroscience".
This lecture on model types introduces the advantages of modeling, provide examples of different model types, and explain what modeling is all about. This lecture contains links to 3 tutorials, lecture/tutorial slides, suggested reading list, and 3 recorded question and answer sessions.
This lecture is part of the Neuromatch Academy (NMA), a massive, interactive online summer school held in 2020 that provided participants with experiences spanning from hands-on modeling experience to meta-science interpretation skills across just about everything that could reasonably be included in the label "computational neuroscience".
This lecture focuses on how to get from a scientific question to a model using concrete examples. We will present a 10-step practical guide on how to succeed in modeling. This lecture contains links to 2 tutorials, lecture/tutorial slides, suggested reading list, and 3 recorded question and answer sessions.
This lecture is part of the Neuromatch Academy (NMA), a massive, interactive online summer school held in 2020 that provided participants with experiences spanning from hands-on modeling experience to meta-science interpretation skills across just about everything that could reasonably be included in the label "computational neuroscience".
This lecture formalizes modeling as a decision process that is constrained by a precise problem statement and specific model goals. We provide real-life examples on how model building is usually less linear than presented in Modeling Practice I.
This lecture is part of the Neuromatch Academy (NMA), a massive, interactive online summer school held in 2020 that provided participants with experiences spanning from hands-on modeling experience to meta-science interpretation skills across just about everything that could reasonably be included in the label "computational neuroscience".
This lecture focuses on the purpose of model fitting, approaches to model fitting, model fitting for linear models, and how to assess the quality and compare model fits. We will present a 10-step practical guide on how to succeed in modeling.