Skip to main content

In this lesson, the simulation of a virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved clinical results. You will learn about the fundamentals of epilepsy, as well as the concepts underlying epilepsy simulation. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.

Difficulty level: Beginner
Duration: 1:28:53
Speaker: : Julie Courtiol

In this lesson you will learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper On the Nature of Seizure Dynamics, which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.

Difficulty level: Beginner
Duration: 4:44
Speaker: : Paul Triebkorn
Course:

The Mouse Phenome Database (MPD) provides access to primary experimental trait data, genotypic variation, protocols and analysis tools for mouse genetic studies. Data are contributed by investigators worldwide and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD ensures rigorous curation of phenotype data and supporting documentation using relevant ontologies and controlled vocabularies. As a repository of curated and integrated data, MPD provides a means to access/re-use baseline data, as well as allows users to identify sensitized backgrounds for making new mouse models with genome editing technologies, analyze trait co-inheritance, benchmark assays in their own laboratories, and many other research applications. MPD’s primary source of funding is NIDA. For this reason, a majority of MPD data is neuro- and behavior-related.

Difficulty level: Beginner
Duration: 55:36
Speaker: : Elissa Chesler

This lesson introduces the EEGLAB toolbox, as well as motivations for its use.

Difficulty level: Beginner
Duration: 15:32
Speaker: : Arnaud Delorme

In this lesson, you will learn about the biological activity which generates and is measured by the EEG signal.

Difficulty level: Beginner
Duration: 6:53
Speaker: : Arnaud Delorme

This lesson goes over the characteristics of EEG signals when analyzed in source space (as opposed to sensor space). 

Difficulty level: Beginner
Duration: 10:56
Speaker: : Arnaud Delorme

This lesson describes the development of EEGLAB as well as to what extent it is used by the research community.

Difficulty level: Beginner
Duration: 6:06
Speaker: : Arnaud Delorme

This lesson provides instruction as to how to build a processing pipeline in EEGLAB for a single participant. 

Difficulty level: Beginner
Duration: 9:20
Speaker: :

Whereas the previous lesson of this course outlined how to build a processing pipeline for a single participant, this lesson discusses analysis pipelines for multiple participants simultaneously. 

Difficulty level: Beginner
Duration: 10:55
Speaker: : Arnaud Delorme

In addition to outlining the motivations behind preprocessing EEG data in general, this lesson covers the first step in preprocessing data with EEGLAB, importing raw data. 

Difficulty level: Beginner
Duration: 8:30
Speaker: : Arnaud Delorme

Continuing along the EEGLAB preprocessing pipeline, this tutorial walks users through how to import data events as well as EEG channel locations.

Difficulty level: Beginner
Duration: 11:53
Speaker: : Arnaud Delorme

This tutorial demonstrates how to re-reference and resample raw data in EEGLAB, why such steps are important or useful in the preprocessing pipeline, and how choices made at this step may affect subsequent analyses.

Difficulty level: Beginner
Duration: 11:48
Speaker: : Arnaud Delorme

This tutorial instructs users how to visually inspect partially pre-processed neuroimaging data in EEGLAB, specifically how to use the data browser to investigate specific channels, epochs, or events for removable artifacts, biological (e.g., eye blinks, muscle movements, heartbeat) or otherwise (e.g., corrupt channel, line noise). 

Difficulty level: Beginner
Duration: 5:08
Speaker: : Arnaud Delorme

This tutorial provides instruction on how to use EEGLAB to further preprocess EEG datasets by identifying and discarding bad channels which, if left unaddressed, can corrupt and confound subsequent analysis steps. 

Difficulty level: Beginner
Duration: 13:01
Speaker: : Arnaud Delorme

Users following this tutorial will learn how to identify and discard bad EEG data segments using the MATLAB toolbox EEGLAB. 

Difficulty level: Beginner
Duration: 11:25
Speaker: : Arnaud Delorme

This module covers many of the types of non-invasive neurotech and neuroimaging devices including electroencephalography (EEG), electromyography (EMG), electroneurography (ENG), magnetoencephalography (MEG), and more. 

Difficulty level: Beginner
Duration: 13:36
Speaker: : Harrison Canning

This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.

Difficulty level: Beginner
Duration: 2:24:35

The state of the field regarding the diagnosis and treatment of major depressive disorder (MDD) is discussed. Current challenges and opportunities facing the research and clinical communities are outlined, including appropriate quantitative and qualitative analyses of the heterogeneity of biological, social, and psychiatric factors which may contribute to MDD.

Difficulty level: Beginner
Duration: 1:29:28

This lesson delves into the opportunities and challenges of telepsychiatry. While novel digital approaches to clinical research and care have the potential to improve and accelerate patient outcomes, researchers and care providers must consider new population factors, such as digital disparity. 

Difficulty level: Beginner
Duration: 1:20:28
Speaker: : Abhi Pratap

This lesson aims to define computational neuroscience in general terms, while providing specific examples of highly successful computational neuroscience projects. 

Difficulty level: Beginner
Duration: 59:21
Speaker: : Alla Borisyuk