Skip to main content

This lecture provides an introduction to optogenetics, a biological technique to control the activity of neurons or other cell types with light.

Difficulty level: Beginner
Duration: 39:34
Speaker: : Adam Packer

This lecture provides an introduction to the study of eye-tracking in humans. 

Difficulty level: Beginner
Duration: 34:05
Speaker: : Ulrich Ettinger

This lecture covers different perspectives on the study of the mental, focusing on the difference between Mind and Brain. 

Difficulty level: Beginner
Duration: 1:16:30

This lecture covers the history of behaviorism and the ultimate challenge to behaviorism. 

Difficulty level: Beginner
Duration: 1:19:08

This lecture covers various learning theories.

Difficulty level: Beginner
Duration: 1:00:42

This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.

Difficulty level: Beginner
Duration: 2:24:35

This lesson discusses both state-of-the-art detection and prevention schema in working with neurodegenerative diseases. 

Difficulty level: Beginner
Duration: 1:02:29
Speaker: : Nir Giladi

This lecture provides an overview of depression (epidemiology and course of the disorder), clinical presentation, somatic co-morbidity, and treatment options.

Difficulty level: Beginner
Duration: 37:51

This lecture provides an overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the central nervous system. 

Difficulty level: Beginner
Duration: 45:47

This lesson gives an introduction to simple spiking neuron models.

Difficulty level: Beginner
Duration: 48 Slides
Speaker: : Zubin Bhuyan

This lesson provides an introduction to simple spiking neuron models.

Difficulty level: Beginner
Duration: 48 Slides
Speaker: : Zubin Bhuyan

This tutorial is part 1 of 2. It aims to provide viewers with an understanding of the fundamentals of R tool. Note: parts 1 and 2 of this tutorial are part of the same YouTube video; part 1 ends at 17:42. 

Difficulty level: Beginner
Duration: 17:42
Speaker: : Edureka

This lesson introduces the practical usage of The Virtual Brain (TVB) in its graphical user interface and via python scripts. In the graphical user interface, you are guided through its data repository, simulator, phase plane exploration tool, connectivity editor, stimulus generator, and the provided analyses. The implemented iPython notebooks of TVB are presented, and since they are public, can be used for further exploration of TVB. 

Difficulty level: Beginner
Duration: 1:12:24
Speaker: : Paul Triebkorn

This hands-on tutorial focuses on a brief introduction to the GUI of TVB. You will visualize a structural connectome and use it for simulation. The local neural mass model will be explored through the phase plane viewer and a parameter space exploration will be performed to observe different dynamics of the large-scale brain model.

Difficulty level: Beginner
Duration: 23:21
Speaker: : Paul Triebkorn

Simulate your own stimulation with the TVB graphical user interface. This hands-on shows you how to configure a stimulus for a specific brain region and apply it to the simulation. Afterwards the results are visualized with the TVB 3D viewer.

Difficulty level: Beginner
Duration: 20:59
Speaker: : Paul Triebkorn

Manipulate the default connectome provided with TVB to see how structural lesions effect brain dynamics. In this hands-on session you will insert lesions into the connectome within the TVB graphical user interface (GUI). Afterwards, the modified connectome will be used for simulations and the resulting activity will be analysed using functional connectivity.

Difficulty level: Beginner
Duration: 31:22
Speaker: : Paul Triebkorn

Learn how to simulate strokes with the simulation platform, The Virtual Brain. We will go through two papers: Functional Mechanisms of Recovery after Stroke: Modeling with The Virtual Brain and The Virtual Brain: Modeling Biological Correlates of Recovery After Chronic Stroke, and apply the same processes with our own structural connectivity dataset in The Virtual Brain.

Difficulty level: Beginner
Duration: 7:43
Speaker: : Paul Triebkorn

In this lesson you will learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper On the Nature of Seizure Dynamics, which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.

Difficulty level: Beginner
Duration: 4:44
Speaker: : Paul Triebkorn

In this lecture we will focus on a paper called The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread. We will have a closer look at the equations of the epileptor model and particular the epileptogenicity index, which controls the excitability of each brain region. Subsequently, we will begin to setup the epileptogenic zone in our own brain network model with TVB.

Difficulty level: Beginner
Duration: 6:25
Speaker: : Paul Triebkorn

After introducing the local epileptor model in the previous two videos, we will now use it in a large-scale brain simulation. We again focus on the paper The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread. Two simulations with different epileptogenicity across the network are visualized to show the difference in seizure spread across the cortex.

Difficulty level: Beginner
Duration: 6:36
Speaker: : Paul Triebkorn