Skip to main content

This lecture provides an introduction to the application of genetic testing in neurodevelopmental disorders.

Difficulty level: Beginner
Duration: 37:47

This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.

Difficulty level: Beginner
Duration: 2:24:35

This brief talk goes into work being done at The Alan Turing Institute to solve real-world challenges and democratize computer vision methods to support interdisciplinary and international researchers. 

Difficulty level: Beginner
Duration: 7:10

This lesson contains the first part of the lecture Data Science and Reproducibility. You will learn about the development of data science and what the term currently encompasses, as well as how neuroscience and data science intersect. 

Difficulty level: Beginner
Duration: 32:18
Speaker: : Ariel Rokem

In this second part of the lecture Data Science and Reproducibility, you will learn how to apply the awareness of the intersection between neuroscience and data science (discussed in part one) to an understanding of the current reproducibility crisis in biomedical science and neuroscience. 

Difficulty level: Beginner
Duration: 31:31
Speaker: : Ashley Juavinett

This lesson aims to define computational neuroscience in general terms, while providing specific examples of highly successful computational neuroscience projects. 

Difficulty level: Beginner
Duration: 59:21
Speaker: : Alla Borisyuk

In this lesson, you will learn about the current challenges facing the integration of machine learning and neuroscience. 

Difficulty level: Beginner
Duration: 5:42
Speaker: : Dan Goodman
Course:

This lecture gives an introduction to simulation, models, and the neural simulation tool NEST. 

Difficulty level: Beginner
Duration: 1:48:18
Course:

This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.

Difficulty level: Beginner
Duration: 1:23:01
Speaker: : Gaute Einevoll

This lecture focuses on how the immune system can target and attack the nervous system to produce autoimmune responses that may result in diseases such as multiple sclerosis, neuromyelitis, and lupus cerebritis manifested by motor, sensory, and cognitive impairments. Despite the fact that the brain is an immune-privileged site, autoreactive lymphocytes producing proinflammatory cytokines can cause active brain inflammation, leading to myelin and axonal loss.

Difficulty level: Beginner
Duration: 37:36
Speaker: : Anat Achiron

In this lesson, you will learn about how genetics can contribute to our understanding of psychiatric phenotypes.

Difficulty level: Beginner
Duration: 55:15
Speaker: : Sven Cichon

This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.

Difficulty level: Beginner
Duration: 1:23:01
Speaker: : Gaute Einevoll

This lesson discuses forms of neural plasticity on many levels, including short-term, long-term, metaplasticity, and structural plasticity. During the lesson you will also be presented with examples related to the modelling of biochemical networks. 

Difficulty level: Beginner
Duration: 1:11:29
Speaker: : Upi Bhalla

This lesson provides an introduction to modelling of chemical computation in the brain.

Difficulty level: Beginner
Duration: 1:00:11
Speaker: : Upi Bhalla

This lesson is part 1 of 2 of a tutorial on statistical models for neural data.

Difficulty level: Beginner
Duration: 1:45:48
Speaker: : Jonathan Pillow

This lesson is part 2 of 2 of a tutorial on statistical models for neural data.

Difficulty level: Beginner
Duration: 1:50:31
Speaker: : Jonathan Pillow

This lecture covers an Introduction to neuron anatomy and signaling, as well as different types of models, including the Hodgkin-Huxley model.

Difficulty level: Beginner
Duration: 1:23:01
Speaker: : Gaute Einevoll

This lecture describes forms of plasticity on many levels: short-term, long-term, metaplasticity, and structural plasticity. Included in this lecture are also examples related to modelling of biochemical networks.

Difficulty level: Beginner
Duration: 1:11:29
Speaker: : Upi Bhalla

This lesson provides an introduction to modelling of chemical computation in the brain.

Difficulty level: Beginner
Duration: 1:00:11
Speaker: : Upi Bhalla

This lesson provides an introduction to the role of models in theoretical neuroscience, particularly focusing on David Marr's work on levels of description/analysis of the brain as a complex system: computation, algorithm & representation, and implementation.

Difficulty level: Beginner
Duration: 19:26
Speaker: : Jakob Macke