Skip to main content
Course:

Neuronify is an educational tool meant to create intuition for how neurons and neural networks behave. You can use it to combine neurons with different connections, just like the ones we have in our brain, and explore how changes on single cells lead to behavioral changes in important networks. Neuronify is based on an integrate-and-fire model of neurons. This is one of the simplest models of neurons that exist. It focuses on the spike timing of a neuron and ignores the details of the action potential dynamics. These neurons are modeled as simple RC circuits. When the membrane potential is above a certain threshold, a spike is generated and the voltage is reset to its resting potential. This spike then signals other neurons through its synapses.

Neuronify aims to provide a low entry point to simulation-based neuroscience.

Difficulty level: Beginner
Duration: 01:25
Speaker: : Neuronify

This tutorial is part 1 of 2. It aims to provide viewers with an understanding of the fundamentals of R tool.

Difficulty level: Beginner
Duration: 1:32:59
Speaker: : Edureka

This tutorial is part 2 of 2. It aims to provide viewers with an understanding of the fundamentals of R tool.

Difficulty level: Beginner
Duration: 1:32:59
Speaker: : Edureka
Difficulty level: Beginner
Duration: 6:10
Speaker: : MATLAB®
Difficulty level: Beginner
Duration: 15:10
Speaker: : MATLAB®
Difficulty level: Beginner
Duration: 2:49
Speaker: : MATLAB®
Difficulty level: Beginner
Duration: 6:10
Speaker: : MATLAB®

This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.

Difficulty level: Beginner
Duration: 6:27
Speaker: : MATLAB®
Difficulty level: Beginner
Duration: 3:55
Speaker: : MATLAB®
Difficulty level: Beginner
Duration: 3:52
Speaker: : MATLAB®

A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni

This tutorial was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:21:40
Speaker: : Tal Yarkoni

This lecture covers structured data, databases, federating neuroscience-relevant databases, ontologies. 

Difficulty level: Beginner
Duration: 1:30:45
Speaker: : Maryann Martone

This lecture covers describing and characterizing an input-output relationship.

Difficulty level: Beginner
Duration: 1:35:33

Part 1 of 2 of a tutorial on statistical models for neural data

Difficulty level: Beginner
Duration: 1:45:48
Speaker: : Jonathan Pillow

Part 2 of 2 of a tutorial on statistical models for neural data.

Difficulty level: Beginner
Duration: 1:50:31
Speaker: : Jonathan Pillow

From the retina to the superior colliculus, the lateral geniculate nucleus into primary visual cortex and beyond, this lecture gives a tour of the mammalian visual system highlighting the Nobel-prize winning discoveries of Hubel & Wiesel.

Difficulty level: Beginner
Duration: 56:31
Speaker: : Clay Reid

From Universal Turing Machines to McCulloch-Pitts and Hopfield associative memory networks, this lecture explains what is meant by computation.

Difficulty level: Beginner
Duration: 55:27
Speaker: : Christof Koch

Ion channels and the movement of ions across the cell membrane.

Difficulty level: Beginner
Duration: 25:51
Speaker: : Carl Petersen

The "connectome" is a term, coined in the past decade, that has been used to describe more than one phenomenon in neuroscience. This lecture explains the basics of structural connections at the micro-, meso- and macroscopic scales.

Difficulty level: Beginner
Duration: 1:13:16
Speaker: : Clay Reid