This lecture gives an introduction to simulation, models, and the neural simulation tool NEST.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases.
2nd part of the lecture. This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases.
This lecture will provide an overview of neuroimaging techniques and their clinical applications
A basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.
The lecture focuses on rationale for employing neuroimaging methods for movement disorders
Introduction to the principal of anatomical organization of neural systems in the human brain and spinal cord that mediate sensation, integrate signals, and motivate behavior.
This lecture focuses on the comprehension of nociception and pain sensation. It highlights how the somatosensory system and different molecular partners are involved in nociception and how nociception and pain sensation are studied in rodents and humans and the development of pain therapy.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
Forms of plasticity on many levels - short-term, long-term, metaplasticity, structural plasticity. With examples related to modelling of biochemical networks.
[NB: The sound uptake is a bit noisy the first few minutes, but gets better from about 5 mins in]
Introduction to modelling of chemical computation in the brain
Part 1 of 2 of a tutorial on statistical models for neural data
Part 2 of 2 of a tutorial on statistical models for neural data.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
Forms of plasticity on many levels - short-term, long-term, metaplasticity, structural plasticity. With examples related to modelling of biochemical networks.
[NB: The sound uptake is a bit noisy the first few minutes, but gets better from about 5 mins in]
Introduction to modelling of chemical computation in the brain
Introduction to the role of models in theoretical neuroscience
Different types of models, model complexity, and how to choose an appropriate model.
Balanced E-I networks, stability and gain modulation