This tutorial is part 1 of 2. It aims to provide viewers with an understanding of the fundamentals of R tool.
This tutorial is part 2 of 2. It aims to provide viewers with an understanding of the fundamentals of R tool.
This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.
A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This tutorial was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network.
Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.
Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.
Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.
Introductory presentation on how data science can help with scientific reproducibility.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Introduction to the course Cellular Mechanisms of Brain Function.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Introduction to the course Cellular Mechanisms of Brain Function.