This lecture gives an introduction to simulation, models, and the neural simulation tool NEST.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
A basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.
This lecture provides an overview of depression (epidemiology and course of the disorder), clinical presentation, somatic co-morbidity, and treatment options.
An overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the Central Nervous System.
Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
Forms of plasticity on many levels - short-term, long-term, metaplasticity, structural plasticity. With examples related to modelling of biochemical networks.
[NB: The sound uptake is a bit noisy the first few minutes, but gets better from about 5 mins in]
Introduction to modelling of chemical computation in the brain
Part 1 of 2 of a tutorial on statistical models for neural data
Part 2 of 2 of a tutorial on statistical models for neural data.
Introduction to simple spiking neuron models.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
Introduction to the course Cellular Mechanisms of Brain Function.
Forms of plasticity on many levels - short-term, long-term, metaplasticity, structural plasticity. With examples related to modelling of biochemical networks.
[NB: The sound uptake is a bit noisy the first few minutes, but gets better from about 5 mins in]
Introduction to modelling of chemical computation in the brain
Introduction to the role of models in theoretical neuroscience
Different types of models, model complexity, and how to choose an appropriate model.
Balanced E-I networks, stability and gain modulation
Methods for dimensionality reduction of data, with focus on factor analysis.