This tutorial is part 1 of 2. It aims to provide viewers with an understanding of the fundamentals of R tool.
This tutorial is part 2 of 2. It aims to provide viewers with an understanding of the fundamentals of R tool.
This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.
A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This tutorial was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Agah Karakuzu takes a spaghetti script written in MATLAB and turns it into understandable and reusable code living happily in a powerful GitHub repository.
A quick walkthrough the Tidyverse, an "opinionated" collection of R packages designed for data science. Includes the use of readr, dplyr, tidyr, and ggplot2.
Basic knowledge and comfort with Command Line Interfaces (CLI) is highly beneficial for learning how to use countless neuroscience tools and acquiring programming skills. Furthermore, CLIs are better disposed to reproducibility, automation, concatenation in pipelines, execution on multiple platforms, and remote access.
Ross Markello takes you through this general introduction to the essentials of navigating through a Bash terminal environment. The lesson is based on the Software Carpentries "Introduction to the Shell" and was given in the context of the BrainHack School 2020.
Ross Markello provides an overview of Python applications to data analysis, demonstrating why it has become ubiquitous in data science and neuroscience.
The lesson was given in the context of the BrainHack School 2020.
As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers
This lecture covers how FAIR practices affect personalized data models, including workflows, challenges, and how to improve these practices.
As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers
This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.
2nd part of the lecture. Introduction to cell receptors and signalling cascades
GABAergic interneurons and local inhibition on the circuit level.
The "connectome" is a term, coined in the past decade, that has been used to describe more than one phenomenon in neuroscience. This lecture explains the basics of structural connections at the micro-, meso- and macroscopic scales.