Course:

The probability of a hypothesis, given data.

Difficulty level: Beginner

Duration: 7:57

Speaker: : Barton Poulson

Course:

Why math is useful in data science.

Difficulty level: Beginner

Duration: 1:35

Speaker: : Barton Poulson

Course:

Why statistics are useful for data science.

Difficulty level: Beginner

Duration: 4:01

Speaker: : Barton Poulson

Course:

Statistics is exploring data.

Difficulty level: Beginner

Duration: 2:23

Speaker: : Barton Poulson

Course:

Graphical data exploration

Difficulty level: Beginner

Duration: 8:01

Speaker: : Barton Poulson

Course:

Numerical data exploration

Difficulty level: Beginner

Duration: 5:05

Speaker: : Barton Poulson

Course:

Simple description of statistical data.

Difficulty level: Beginner

Duration: 10:16

Speaker: : Barton Poulson

Course:

Basics of hypothesis testing.

Difficulty level: Beginner

Duration: 06:04

Speaker: : Barton Poulson

In this lecture, the speaker demonstrates Neurokernel's module interfacing feature by using it to integrate independently developed models of olfactory and vision LPUs based upon experimentally obtained connectivity information.

Difficulty level: Intermediate

Duration: 29:56

Speaker: : Aurel A. Lazar

Course:

Enabling neuroscience research using high performance computing

Difficulty level: Beginner

Duration: 39:27

Speaker: : Subha Sivagnanam

This lecture 1/15 is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 0:40

Speaker: : Florence I. Kleberg

This lecture (2/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:23

Speaker: : Florence I. Kleberg

This lecture (3/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:20

Speaker: : Florence I. Kleberg

This lecture (4/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:08

Speaker: : Florence I. Kleberg

This lecture (5/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:18

Speaker: : Florence I. Kleberg

This lecture (6/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures. Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:26

Speaker: : Florence I. Kleberg

This lecture (7/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 0:42

Speaker: : Florence I. Kleberg

This lecture (8/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 2:40

Speaker: : Florence I. Kleberg

This lecture (9/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 2:54

Speaker: : Florence I. Kleberg

This lecture (10/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:43

Speaker: : Florence I. Kleberg

- Standards and Best Practices (10)
- Programming (12)
- Stroke (1)
- Mouse (2)
- Phenotypes (1)
- FAIR (9)
- Genotype (1)
- Connectivity (1)
- Clinical neuroscience (12)
- Brain networks (1)
- Publishing (1)
- Magnetoencephalography (MEG) (14)
- Machine learning (1)
- (-) Neuronal plasticity (15)
- Event related potential (ERP) (19)
- Electroencephalography (EEG) (20)
- Cloud computing (1)
- Phenome (1)
- General neuroscience
(24)
- General neuroinformatics (1)
- Computational neuroscience (234)
- Computer Science (14)
- Genomics (25)
- Data science (14)
- Open science (22)
- Project management (7)
- Ethics (12)