This video will teach you the basics of navigating the OSF, a free research management tool, and creating your first projects.
This webinar walks you through the basics of creating an OSF project, structuring it to fit your research needs, adding collaborators, and tying your favorite online tools into your project structure.
This webinar will introduce how to use the Open Science Framework (OSF; https://osf.io) in a Classroom. The OSF is a free, open source web application built to help researchers manage their workflows. The OSF is part collaboration tool, part version control software, and part data archive. The OSF connects to popular tools researchers already use, like Dropbox, Box, Github and Mendeley, to streamline workflows and increase efficiency.
Organizing related projects with Links, Forks, and Templates.
This webinar will introduce the integration of JASP Statistical Software (https://jasp-stats.org/) with the Open Science Framework (OSF; https://osf.io). The OSF is a free, open source web application built to help researchers manage their workflows
This tutorial talks about how to upload and version your data in OpenNeuro.org
This tutorial shows how to share your data in OpenNeuro.org
This tutorial shows how to run analysis in OpenNeuro.org
Brief introduction to Research Resource Identifiers (RRIDs), persistent and unique identifiers for referencing a research resource.
Longitudinal Online Research and Imaging System (LORIS) is a web-based data and project management software for neuroimaging research studies. It is an open source framework for storing and processing behavioural, clinical, neuroimaging and genetic data. LORIS also makes it easy to manage large datasets acquired over time in a longitudinal study, or at different locations in a large multi-site study.
In this lesson, Yaroslav O. Halchenko describes how DataLad allows you to track and mange both your data and analysis code, thereby facilitating reliable, reproducible, and shareable research.
EEGLAB is an interactive Matlab toolbox for processing continuous and event-related EEG, MEG and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data. EEGLAB runs under Linux, Unix, Windows, and Mac OS X.