Skip to main content

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate
Duration: 5:17
Speaker: : Mike X. Cohen

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate
Duration: 11:37
Speaker: : Mike X. Cohen

In this lesson, users will learn about human brain signals as measured by electroencephalography (EEG), as well as associated neural signatures such as steady state visually evoked potentials (SSVEPs) and alpha oscillations. 

Difficulty level: Intermediate
Duration: 8:51
Speaker: : Mike X. Cohen

This lesson provides a brief overview of the Python programming language, with an emphasis on tools relevant to data scientists.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni
Course:

In this lesson, users can follow along as a spaghetti script written in MATLAB is turned into understandable and reusable code living happily in a powerful GitHub repository.

Difficulty level: Beginner
Duration: 2:08:19
Speaker: : Agah Karakuzu
Course:

This lesson gives a quick walkthrough the Tidyverse, an "opinionated" collection of R packages designed for data science, including the use of readr, dplyr, tidyr, and ggplot2.

Difficulty level: Beginner
Duration: 1:01:39
Speaker: : Thomas Mock

This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page. 

Difficulty level: Intermediate
Duration: 12:50
Speaker: : Dan Goodman

This lesson provides a brief introduction to the Computational Modeling of Neuronal Plasticity.

Difficulty level: Intermediate
Duration: 0:40

In this lesson, you will be introducted to a type of neuronal model known as the leaky integrate-and-fire (LIF) model.

Difficulty level: Intermediate
Duration: 1:23

This lesson goes over various potential inputs to neuronal synapses, loci of neural communication.

Difficulty level: Intermediate
Duration: 1:20

This lesson describes the how and why behind implementing integration time steps as part of a neuronal model.

Difficulty level: Intermediate
Duration: 1:08

In this lesson, you will learn about neural spike trains which can be characterized as having a Poisson distribution.

Difficulty level: Intermediate
Duration: 1:18

This lesson covers spike-rate adaptation, the process by which a neuron's firing pattern decays to a low, steady-state frequency during the sustained encoding of a stimulus.

Difficulty level: Intermediate
Duration: 1:26

This lesson provides a brief explanation of how to implement a neuron's refractory period in a computational model.

Difficulty level: Intermediate
Duration: 0:42

In this lesson, you will learn a computational description of the process which tunes neuronal connectivity strength, spike-timing-dependent plasticity (STDP).

Difficulty level: Intermediate
Duration: 2:40

This lesson reviews theoretical and mathematical descriptions of correlated spike trains.

Difficulty level: Intermediate
Duration: 2:54

This lesson investigates the effect of correlated spike trains on spike-timing dependent plasticity (STDP).

Difficulty level: Intermediate
Duration: 1:43

This lesson goes over synaptic normalisation, the homeostatic process by which groups of weighted inputs scale up or down their biases.

Difficulty level: Intermediate
Duration: 2:58

In this lesson, you will learn about the intrinsic plasticity of single neurons.

Difficulty level: Intermediate
Duration: 2:08

This lesson covers short-term facilitation, a process whereby a neuron's synaptic transmission is enhanced for a short (sub-second) period.

Difficulty level: Intermediate
Duration: 1:58