Skip to main content

This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and go through both motivation and process involved in moving your research computing to the cloud. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 3:09:12
Speaker: : Amanda Tan

As a part of NeuroHackademy 2020, Tara Madhyastha (University of Washington), Andrew Crabb (AWS), and Ariel Rokem (University of Washington) give a lecture on Cloud Computing, focusing on Amazon Web Services

 

This video is provided by the University of Washington eScience Institute.

 

Difficulty level: Beginner
Duration: 01:43:59
Speaker: :

Shawn Brown presents an overview of CBRAIN, a web-based platform that allows neuroscientists to perform computationally intensive data analyses by connecting them to high-performance-computing facilities across Canada and around the world.

 

This talk was given in the context of a Ludmer Centre event in 2019.

 

 

Difficulty level: Beginner
Duration: 56:07
Speaker: :

This is the Introductory Module to the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate
Duration: 50:17

This module covers the concepts of gradient descent and the backpropagation algorithm and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate
Duration: 1:51:03
Speaker: : Yann LeCun

This lecture on modules and architectures is part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate
Duration: 1:42:26

This lecture covers the concept of parameter sharing: recurrent and convolutional nets and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep Learning and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate
Duration: 1:59:47

This lecture covers the concept of convolutional nets in practice and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep Learning and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate
Duration: 51:40
Speaker: : Yann LeCun

This lecture is a foundationational lecture for the concept of energy based models with a particular focus on the joint embedding method and latent variable energy based models 8LV-EBMs) and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep Learning, Parameter sharing, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate
Duration: 1:51:30
Speaker: : Yann LeCun

This lecture is a foundationational lecture for the concept of energy based models with a particular focus on the joint embedding method and latent variable energy based models 8LV-EBMs) and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep LearningParameter sharing, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate
Duration: 1:48:53
Speaker: : Yann LeCun

 

Blake Richards gives an introduction to deep learning, with a perspective via inductive biases and emphasis on correctly matching deep learning to the right research questions.

 

The lesson was presented in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 01:35:12
Speaker: :

Serving as good refresher, Shawn Grooms explains the maths and logic concepts that are important for programmers to understand, including sets, propositional logic, conditional statements, and more.

 

This compilation is courtesy of freeCodeCamp.

Difficulty level: Beginner
Duration: 01:00:07
Speaker: :

Linear algebra is the branch of mathematics concerning linear equations such as linear functions and their representations through matrices and vector spaces. As such, it underlies a huge variety of analyses in the neurosciences.  This lesson provides a useful refresher which will facilitate the use of Matlab, Octave, and various matrix-manipulation and machine-learning software.

 

This lesson was created by RootMath.

Difficulty level: Beginner
Duration: 01:21:30
Speaker: :

This lecture covers the ethical implications of the use of pharmaceuticals to enhance brain functions and was part of the Neuro Day Workshop held by the NeuroSchool of Aix Marseille University.

Difficulty level: Beginner
Duration: 1:09:29
Speaker: : Eric Racine

The landscape of scientific research is changing. Today’s researchers need to participate in large-scale collaborations, obtain and manage funding, share data, publish, and undertake knowledge translation activities in order to be successful. As per these increasing demands, Science Management is now a vital piece of the environment.

Difficulty level: Beginner
Duration: 18:13
Speaker: : Mojib Javadi

Brought to you by the New Digital Infrastructure Organization.

 

In the past five years, researchers have seen a growing number of research data management (RDM) policies being implemented by funders, publishers, and institutions. One key element in meeting these requirements, particularly in terms of data discovery, is using metadata, which helps make research data findable, accessible, interoperable and reusable (the FAIR principles). This session discussed the secret life of your dataset metadata: the ways in which, for many years to come, it will work non-stop to foster the visibility, reach, and impact of your work. We explored how metadata will help your dataset travel through the global research infrastructure, and how data repositories and discovery services can use this (meta)data to help launch your dataset into the world.

 

Connect with us! Follow us on Twitter at @NDRIO_NOIRN and @PortageRDM_GDR.

 

For more information, visit our website: https://engagedri.ca/

Difficulty level: Beginner
Duration: 59:58
Speaker: :

Brought to you by the Canadian Association of Research Libraries.

 

Data management plans, or DMPs, are one of the foundations of good research data management. This DMP-focused webinar will be of interest to researchers, graduate students, librarians, and research support stakeholders, and will provide foundational information on developing DMPs. Topics covered will include the importance and benefits of DMPs, how they support research excellence, and what makes a ‘good’ DMP, as well as a detailed look at their standard content. Resources to help with the development of DMPs – including bilingual training materials, guidance documents and Exemplar DMPs – will be presented, as well as an update on the activities of the Portage DMP Expert Group, including forthcoming resources. A brief overview of the DMP Assistant platform will be provided, while a second separate session will deliver an in-depth look at the latest version of this platform, including its key features.

 

Speaker: James Doiron, Research Data Management Services Coordinator, University of Alberta Libraries

Difficulty level: Beginner
Duration: 01:01:55
Speaker: :

Brought to you by the Canadian Association of Research Libraries.

 

Data management plans, or DMPs, are one of the foundations of good research data management. Hosted by the University of Alberta Library and supported by the Portage Network, the DMP Assistant is a national, open, bilingual data management planning (DMP) tool to help researchers better manage their data throughout the lifespan of a project. The tool develops a DMP by prompting researchers to answer a number of key data management questions, supported by best-practice guidance and examples. Building on the preceding DMP-focused webinar, this session will be of interest to researchers, graduate students, librarians, and research support stakeholders. Participants will take an in-depth look at the newly launched DMP Assistant 2.0, including all of its enhanced key features for both end-users and institutional administrators, as well as a brief look at the future of the platform.

 

Speaker: Robyn Nicholson, Data Management Planning Coordinator, Portage Network

Difficulty level: Beginner
Duration: 01:03:51
Speaker: :

The Canadian Open Neuroscience Platform (CONP) Portal is a web interface that facilitates open science for the neuroscience community by simplifying global access to and sharing of datasets and tools. The Portal internalizes the typical cycle of a research project, beginning with data acquisition, followed by data processing with published tools, and ultimately the publication of results with a link to the original dataset.

 

In this video, Samir Das and Tristan Glatard give a short overview of the main features of the CONP Portal.

Difficulty level: Beginner
Duration: 14:03
Speaker: :