This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and go through both motivation and process involved in moving your research computing to the cloud. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers. This lecture covers how FAIR practices affect personalized data models, including workflows, challenges, and how to improve these practices.
Much like neuroinformatics, data science uses techniques from computational science to derive meaningful results from large complex datasets. In this session, we will explore the relationship between neuroinformatics and data science, by emphasizing a range of data science approaches and activities, ranging from the development and application of statistical methods, through the establishment of communities and platforms, and through the implementation of open-source software tools. Rather than rigid distinctions, in the data science of neuroinformatics, these activities and approaches intersect and interact in dynamic ways. Together with a panel of cutting-edge neuro-data-scientist speakers, we will explore these dynamics
This lecture covers how brainlife.io works, and how it can be applied to neuroscience data.
As a part of NeuroHackademy 2020, Tara Madhyastha (University of Washington), Andrew Crabb (AWS), and Ariel Rokem (University of Washington) give a lecture on Cloud Computing, focusing on Amazon Web Services.
This video is provided by the University of Washington eScience Institute.
Shawn Brown presents an overview of CBRAIN, a web-based platform that allows neuroscientists to perform computationally intensive data analyses by connecting them to high-performance-computing facilities across Canada and around the world.
This talk was given in the context of a Ludmer Centre event in 2019.
Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience. FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible, Interoperable, and Reusable. But FAIR is not a specification; it leaves many of the specifics up to individual scientific disciplines to define. INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience. We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks. In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience. We will engage in a discussion on questions such as: how is neuroscience doing with respect to FAIR? What have been the successes? What is currently very difficult? Where does neuroscience need to go?
This lecture covers FAIR atlases, from their background, their construction, and how they can be created in line with the FAIR principles.
This lecture focuses on ontologies for clinical neurosciences.
Serving as good refresher, Shawn Grooms explains the maths and logic concepts that are important for programmers to understand, including sets, propositional logic, conditional statements, and more.
This compilation is courtesy of freeCodeCamp.
Linear algebra is the branch of mathematics concerning linear equations such as linear functions and their representations through matrices and vector spaces. As such, it underlies a huge variety of analyses in the neurosciences. This lesson provides a useful refresher which will facilitate the use of Matlab, Octave, and various matrix-manipulation and machine-learning software.
This lesson was created by RootMath.
This lecture discusses the the importance and need for data sharing in clinical neuroscience.
This lecture presents the Medical Informatic Platform's data federation for Traumatic Brain Injury.
This lecture gives insights into the Medical Informatics Platform's current and future data privacy model.
This lecture explains the concept of federated analysis in the context of medical data, associated challenges. The lecture also presents an example of hospital federations via the Medical Informatics Platform.
This lecture gives an overview on the European Health Dataspace.
This lecture presents the Medical Informatics Platform's data federation in epilepsy.
This lecture presents the Medical Informatics Platform's data federation in epilepsy.
DAQCORD is a framework for the design, documentation and reporting of data curation methods in order to advance the scientific rigour, reproducibility and analysis of the data. This lecture covers the rationale for developing the framework, the process in which the framework was developed, and ends with a presentation of the framework. While the driving use case for DAQCORD was clinical traumatic brain injury research, the framework is applicable to clinical studies in other domains of clinical neuroscience research.
This presentation discusses the impact of data sharing in stroke.
This talks discusses data sharing in the context of dementia. It explains why data sharing in dementia is important, how data is usually shared in the field and illustrates two examples: the Netherlands Consortium Dementia cohorts and the European Platform for Neurodegenerative Diseases.