This lesson is a general overview of overarching concepts in neuroinformatics research, with a particular focus on clinical approaches to defining, measuring, studying, diagnosing, and treating various brain disorders. Also described are the complex, multi-level nature of brain disorders and the data associated with them, from genes and individual cells up to cortical microcircuits and whole-brain network dynamics. Given the heterogeneity of brain disorders and their underlying mechanisms, this lesson lays out a case for multiscale neuroscience data integration.
This lesson continues with the second workshop on reproducible science, focusing on additional open source tools for researchers and data scientists, such as the R programming language for data science, as well as associated tools like RStudio and R Markdown. Additionally, users are introduced to Python and iPython notebooks, Google Colab, and are given hands-on tutorials on how to create a Binder environment, as well as various containers in Docker and Singularity.
This lesson gives an in-depth introduction of ethics in the field of artificial intelligence, particularly in the context of its impact on humans and public interest. As the healthcare sector becomes increasingly affected by the implementation of ever stronger AI algorithms, this lecture covers key interests which must be protected going forward, including privacy, consent, human autonomy, inclusiveness, and equity.
This lesson describes a definitional framework for fairness and health equity in the age of the algorithm. While acknowledging the impressive capability of machine learning to positively affect health equity, this talk outlines potential (and actual) pitfalls which come with such powerful tools, ultimately making the case for collaborative, interdisciplinary, and transparent science as a way to operationalize fairness in health equity.
This is a continuation of the talk on the cellular mechanisms of neuronal communication, this time at the level of brain microcircuits and associated global signals like those measureable by electroencephalography (EEG). This lecture also discusses EEG biomarkers in mental health disorders, and how those cortical signatures may be simulated digitally.
This lecture provides an introduction to Plato’s concept of rationality and Aristotle’s concept of empiricism, and the enduring discussion between rationalism and empiricism to this day.
This lecture goes into further detail about the hard problem of developing a scientific discipline for subjective consciousness.
This lecture will provide an overview of neuroimaging techniques and their clinical applications
A basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.
The lecture focuses on rationale for employing neuroimaging methods for movement disorders
An overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the Central Nervous System.
Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.
A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Introduction to reproducible research. The lecture provides an overview of the core skills and practical solutions required to practice reproducible research. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience. FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible, Interoperable, and Reusable. But FAIR is not a specification; it leaves many of the specifics up to individual scientific disciplines to define. INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience. We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks. In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience. We will engage in a discussion on questions such as: how is neuroscience doing with respect to FAIR? What have been the successes? What is currently very difficult? Where does neuroscience need to go?
This lecture covers FAIR atlases, from their background, their construction, and how they can be created in line with the FAIR principles.
Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience. FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible, Interoperable, and Reusable. But FAIR is not a specification; it leaves many of the specifics up to individual scientific disciplines to define. INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience. We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks. In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience. We will engage in a discussion on questions such as: how is neuroscience doing with respect to FAIR? What have been the successes? What is currently very difficult? Where does neuroscience need to go? This lecture covers multiple aspects of FAIR neuroscience data: what makes it unique, the challenges to making it FAIR, the importance of overcoming these challenges, and how data governance comes into play.
This lecture provides guidance on the ethical considerations the clinical neuroimaging community faces when applying the FAIR principles to their research. This lecture was part of the FAIR approaches for neuroimaging research session at the 2020 INCF Assembly.
This lecture covers the description and brief history of data science and its use in neuroinformatics.
This lecture covers self-supervision as it relates to neural data tasks and the Mine Your Own vieW (MYOW) approach.