Skip to main content

The tutorial is intended primarily for beginners, but it will also beneficial to experimentalists who understand electroencephalography and event related techniques, but need additional knowledge in annotation, standardization, long-term storage and publication of data.

Difficulty level: Beginner
Duration: 35:30

This lecture on generating TVB ready imaging data by Paul Triebkorn is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

Difficulty level: Intermediate
Duration: 1:40:52
Speaker: : Paul Triebkorn

This module covers many of the types of non-invasive neurotech and neuroimaging devices including Electroencephalography (EEG), Electromyography (EMG), Electroneurography (ENG), Magnetoencephalography (MEG), functional Near-Infrared Spectroscopy (fNRIs), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed Tomography

Difficulty level: Beginner
Duration: 13:36
Speaker: : Harrison Canning

Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.

Difficulty level: Beginner
Duration: 40:32

An overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the Central Nervous System.

Difficulty level: Beginner
Duration: 45:47

This lecture covers the ethical implications of the use of pharmaceuticals to enhance brain functions and was part of the Neuro Day Workshop held by the NeuroSchool of Aix Marseille University.

Difficulty level: Beginner
Duration: 1:09:29
Speaker: : Eric Racine

A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni

Introduction to the FAIR Principles and examples of applications of the FAIR Principles in neuroscience. This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 55:57

Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 2:15:50
Speaker: : Elizabeth DuPre

Next generation science with Jupyter. This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 50:28
Speaker: : Elizabeth DuPre

Introduction to reproducible research. The lecture provides an overview of the core skills and practical solutions required to practice reproducible research. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:25:17
Speaker: : Fernando Perez

Computational models provide a framework for integrating data across spatial scales and for exploring hypotheses about the biological mechanisms underlying neuronal and network dynamics. However, as models increase in complexity, additional barriers emerge to the creation, exchange, and re-use of models. Successful projects have created standards for describing complex models in neuroscience and provide open source tools to address these issues. This lecture provides an overview of these projects and make a case for expanded use of resources in support of reproducibility and validation of models against experimental data.

Difficulty level: Beginner
Duration: 1:00:39
Speaker: : Sharon Crook

Neuroethics has been described as containing at least two components - the neuroscience of ethics and the ethics of neuroscience. The first involves neuroscientific theories, research, and neuro-imaging focused on how the brain arrives at moral decisions and actions, which challenge existing descriptive theories of how humans develop moral thinking and make ethical decisions. The second, ethics of neuroscience, involves applying normative theories about what is right, good and fair to ethical questions raised by neuroscientific research and new technologies, such as how to balance the public benefit of “big data” neuroscience while protecting individual privacy and norms of informed consent.

Difficulty level: Beginner
Duration: 38:49

The HBP as an ICT flagship project crucially relies on ICT and will contribute important input into the development of new computing principles and artefacts. Individuals working on the HBP should therefore be aware of the long history of ethical issues discussed in computing. The discourse on ethics and computing can be traced back to Norbert Wiener and the very beginning of digital computing. From the 1970s and 80s it has developed into an active discussion involving academics from various disciplines, professional bodies and industry.

Difficulty level: Beginner
Duration: 46:12
Speaker: : Bernd Stahl

Like any transformative technology, intelligent robotics has the potential for huge benefit, but is not without ethical or societal risk. In this lecture, I will explore two questions. Firstly, the increasingly urgent question of the ethical use of robots: are there particular applications of robots that should be proscribed, in eldercare, or surveillance, or war fighting for example? When intelligent autonomous robots make mistakes, as they inevitably will, who should be held to account? Secondly, I will consider the longer-term question of whether intelligent robots themselves could or should be ethical. Seventy years ago Isaac Asimov created his fictional Three Laws of Robotics. Is there now a realistic prospect that we could build a robot that is Three Laws Safe?

Difficulty level: Beginner
Duration: 31:35
Speaker: : Alan Winfield