FAIR principles and methods currently in development for assessing FAIRness.
Introduction to the Brain Imaging Data Structure (BIDS): a standard for organizing human neuroimaging datasets. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
The tutorial is intended primarily for beginners, but it will also beneficial to experimentalists who understand electroencephalography and event related techniques, but need additional knowledge in annotation, standardization, long-term storage and publication of data.
Introduction to the first phases of EEG/ERP data lifecycle
Estefany Suárez provides a conceptual overview of the rudiments of machine learning, including its bases in traditional statistics and the types of questions it might be applied to.
The lesson was presented in the context of the BrainHack School 2020.
Jake Vogel gives a hands-on, Jupyter-notebook-based tutorial to apply machine learning in Python to brain-imaging data.
The lesson was presented in the context of the BrainHack School 2020.
Gael Varoquaux presents some advanced machine learning algorithms for neuroimaging, while addressing some real-world considerations related to data size and type.
The lesson was presented in the context of the BrainHack School 2020.
This lesson from freeCodeCamp introduces Scikit-learn, the most widely used machine learning Python library.
This lecture will provide an overview of neuroimaging techniques and their clinical applications.
This lecture provides guidance on the ethical considerations the clinical neuroimaging community faces when applying the FAIR principles to their research. This lecture was part of the FAIR approaches for neuroimaging research session at the 2020 INCF Assembly.
Introductory presentation on how data science can help with scientific reproducibility.
A basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.
Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Introduction to reproducible research. The lecture provides an overview of the core skills and practical solutions required to practice reproducible research. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
The FOSTER portal has produced a number of guides to help implement Open Science practices in daily workflows, including The Open Science Training Handbook. It provides many basic definitions, concepts, and principles that are key components of open science, as well as general guidance for developing and implementing these practices in one's own research environments.
Topics include: