Skip to main content

Explore how to setup an epileptic seizure simulation with the TVB graphical user interface. This lesson will show you how to program the epileptor model in the brain network to simulate a epileptic seizure originating in the hippocampus. It will also show how to upload and view mouse connectivity data, as well as give a short introduction to the python script interface of TVB.

Difficulty level: Intermediate
Duration: 58:06
Speaker: : Paul Triebkorn

In this lesson you will learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper On the Nature of Seizure Dynamics, which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.

Difficulty level: Beginner
Duration: 4:44
Speaker: : Paul Triebkorn

Manipulate the default connectome provided with TVB to see how structural lesions effect brain dynamics. In this hands-on session you will insert lesions into the connectome within the TVB graphical user interface (GUI). Afterwards, the modified connectome will be used for simulations and the resulting activity will be analysed using functional connectivity.

Difficulty level: Beginner
Duration: 31:22
Speaker: : Paul Triebkorn

The Allen Mouse Brain Atlas is a genome-wide, high-resolution atlas of gene expression throughout the adult mouse brain. This tutorial describes the basic search and navigation features of the Allen Mouse Brain Atlas.

Difficulty level: Beginner
Duration: 6:40

The Allen Developing Mouse Brain Atlas is a detailed atlas of gene expression across mouse brain development. This tutorial describes the basic search and navigation features of the Allen Developing Mouse Brain Atlas.

Difficulty level: Beginner
Duration: 6:35
Speaker: : Unknown

This tutorial demonstrates how to use the differential search feature of the Allen Mouse Brain Atlas to find gene markers for different regions of the brain, as well as to visualize this gene expression in three-dimensional space. Differential search is also available for the Allen Developing Mouse Brain Atlas and the Allen Human Brain Atlas.

Difficulty level: Beginner
Duration: 6:31
Speaker: : Unknown

This hands-on tutorial walks you through DataJoint platform, highlighting features and schema which can be used to build robost neuroscientific pipelines. 

Difficulty level: Beginner
Duration: 26:06
Speaker: : Milagros Marin

This video will document the process of uploading data into a brainlife project using ezBIDS.

Difficulty level: Beginner
Duration: 6:15
Speaker: :

This brief video walks you through the steps necessary when creating a project on brainlife.io. 

Difficulty level: Beginner
Duration: 1:45
Speaker: :

This quick video presents some of the various visualizers available on brainlife.io

Difficulty level: Beginner
Duration: 1:11
Speaker: :

This brief video rus through how to make an accout on brainlife.io.

Difficulty level: Beginner
Duration: 0:30
Speaker: :

This tutorial provides instruction on how to simulate brain tumors with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls.

Difficulty level: Intermediate
Duration: 10:01

The tutorial on modelling strokes in TVB includes a didactic video and jupyter notebooks (reproducing publication: Falcon et al. 2016 eNeuro).

Difficulty level: Intermediate
Duration: 7:43

In this tutorial, you will learn how to run a typical TVB simulation. 

Difficulty level: Intermediate
Duration: 1:29:13
Speaker: : Paul Triebkorn

This tutorial introduces The Virtual Mouse Brain (TVMB), walking users through the necessary steps for performing simulation operations on animal brain data. 

Difficulty level: Intermediate
Duration: 42:43
Speaker: : Patrik Bey

In this tutorial, you will learn the necessary steps in modeling the brain of one of the most commonly studied animals among non-human primates, the macaque. 

Difficulty level: Intermediate
Duration: 1:00:08
Speaker: : Julie Courtiol

This lecture provides an introduction to entropy in general, and multi-scale entropy (MSE) in particular, highlighting the potential clinical applications of the latter. 

Difficulty level: Intermediate
Duration: 39:05
Speaker: : Jil Meier

In this lecture, you will learn about various neuroinformatic resources which allow for 3D reconstruction of brain models. 

Difficulty level: Intermediate
Duration: 1:36:57
Speaker: : Michael Schirner

This lesson consists of a demonstration of the BRIAN Simulator. BRIAN is a free, open-source simulator for spiking neural networks. It is written in the Python programming language and is available on almost all platforms, and is designed to be easy to learn and use, highly flexible, and easily extensible.

Difficulty level: Beginner
Duration: 1:27:32
Speaker: : Marcel Stimberg

This lesson provides a demonstration of NeuroFedora, a volunteer-driven initiative to provide a ready-to-use Fedora-based free and open-source software platform for neuroscience. By making the tools used in the scientific process easier to use, NeuroFedora aims to aid reproducibility, data sharing, and collaboration in the research community.The CompNeuro Fedora Lab was specially to enable computational neuroscience.

Difficulty level: Beginner
Duration: 1:06:08
Speaker: : Ankur Sinha