Skip to main content

This video will document the process of launching a Jupyter Notebook for group-level analyses directly from brainlife.

Difficulty level: Intermediate
Duration: 0:53
Speaker: :

This brief video walks you through the steps necessary when creating a project on brainlife.io. 

Difficulty level: Beginner
Duration: 1:45
Speaker: :

This brief video rus through how to make an accout on brainlife.io.

Difficulty level: Beginner
Duration: 0:30
Speaker: :

This video will document how to run a correlation analysis between the gray matter volume of two different structures using the output from brainlife app-freesurfer-stats.

Difficulty level: Beginner
Duration: 1:33
Speaker: :

This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.

Difficulty level: Intermediate
Duration: 3:09:12

As a part of NeuroHackademy 2020, this lecture delves into cloud computing, focusing on Amazon Web Services. 

Difficulty level: Beginner
Duration: 01:43:59

This talk presents an overview of CBRAIN, a web-based platform that allows neuroscientists to perform computationally intensive data analyses by connecting them to high-performance computing facilities across Canada and around the world.

Difficulty level: Beginner
Duration: 56:07
Speaker: : Shawn Brown

This hands-on tutorial walks you through DataJoint platform, highlighting features and schema which can be used to build robost neuroscientific pipelines. 

Difficulty level: Beginner
Duration: 26:06
Speaker: : Milagros Marin

This video will document the process of uploading data into a brainlife project using ezBIDS.

Difficulty level: Beginner
Duration: 6:15
Speaker: :

This quick video presents some of the various visualizers available on brainlife.io

Difficulty level: Beginner
Duration: 1:11
Speaker: :

This tutorial provides instruction on how to simulate brain tumors with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls.

Difficulty level: Intermediate
Duration: 10:01

The tutorial on modelling strokes in TVB includes a didactic video and jupyter notebooks (reproducing publication: Falcon et al. 2016 eNeuro).

Difficulty level: Intermediate
Duration: 7:43

In this tutorial, you will learn how to run a typical TVB simulation. 

Difficulty level: Intermediate
Duration: 1:29:13
Speaker: : Paul Triebkorn

This tutorial introduces The Virtual Mouse Brain (TVMB), walking users through the necessary steps for performing simulation operations on animal brain data. 

Difficulty level: Intermediate
Duration: 42:43
Speaker: : Patrik Bey

In this tutorial, you will learn the necessary steps in modeling the brain of one of the most commonly studied animals among non-human primates, the macaque. 

Difficulty level: Intermediate
Duration: 1:00:08
Speaker: : Julie Courtiol

This lecture provides an introduction to entropy in general, and multi-scale entropy (MSE) in particular, highlighting the potential clinical applications of the latter. 

Difficulty level: Intermediate
Duration: 39:05
Speaker: : Jil Meier

In this lecture, you will learn about various neuroinformatic resources which allow for 3D reconstruction of brain models. 

Difficulty level: Intermediate
Duration: 1:36:57
Speaker: : Michael Schirner

This lesson consists of a demonstration of the BRIAN Simulator. BRIAN is a free, open-source simulator for spiking neural networks. It is written in the Python programming language and is available on almost all platforms, and is designed to be easy to learn and use, highly flexible, and easily extensible.

Difficulty level: Beginner
Duration: 1:27:32
Speaker: : Marcel Stimberg

This lesson provides a demonstration of NeuroFedora, a volunteer-driven initiative to provide a ready-to-use Fedora-based free and open-source software platform for neuroscience. By making the tools used in the scientific process easier to use, NeuroFedora aims to aid reproducibility, data sharing, and collaboration in the research community.The CompNeuro Fedora Lab was specially to enable computational neuroscience.

Difficulty level: Beginner
Duration: 1:06:08
Speaker: : Ankur Sinha

This lesson provides an introduction and live demonstration of neurolib, a computational framework for simulating coupled neural mass models written in Python. Neurolib provides a simulation and optimization framework which allows you to easily implement your own neural mass model, simulate fMRI BOLD activity, analyse the results and fit your model to empirical data.

Difficulty level: Beginner
Duration: 1:06:53
Speaker: : Çağlar Çakan