Introduction to the central concepts of machine learning, and how they can be applied in Python using the Scikit-learn Package. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
As a part of NeuroHackademy 2020, Elizabeth DuPre gives a lecture on "Nilearn", a python package that provides flexible statistical and machine-learning tools for brain volumes by leveraging the scikit-learn Python toolbox for multivariate statistics. This includes predictive modelling, classification, decoding, and connectivity analysis.
This video is courtesy of the University of Washington eScience Institute.
Estefany Suárez provides a conceptual overview of the rudiments of machine learning, including its bases in traditional statistics and the types of questions it might be applied to.
The lesson was presented in the context of the BrainHack School 2020.
Jake Vogel gives a hands-on, Jupyter-notebook-based tutorial to apply machine learning in Python to brain-imaging data.
The lesson was presented in the context of the BrainHack School 2020.
Gael Varoquaux presents some advanced machine learning algorithms for neuroimaging, while addressing some real-world considerations related to data size and type.
The lesson was presented in the context of the BrainHack School 2020.
This lesson from freeCodeCamp introduces Scikit-learn, the most widely used machine learning Python library.
This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and go through both motivation and process involved in moving your research computing to the cloud. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
As a part of NeuroHackademy 2020, Tara Madhyastha (University of Washington), Andrew Crabb (AWS), and Ariel Rokem (University of Washington) give a lecture on Cloud Computing, focusing on Amazon Web Services.
This video is provided by the University of Washington eScience Institute.
Shawn Brown presents an overview of CBRAIN, a web-based platform that allows neuroscientists to perform computationally intensive data analyses by connecting them to high-performance-computing facilities across Canada and around the world.
This talk was given in the context of a Ludmer Centre event in 2019.
Introductory presentation on how data science can help with scientific reproducibility.
This lecture provides an overview of depression (epidemiology and course of the disorder), clinical presentation, somatic co-morbidity, and treatment options.
Introduction to the principal of anatomical organization of neural systems in the human brain and spinal cord that mediate sensation, integrate signals, and motivate behavior.
This lecture focuses on the comprehension of nociception and pain sensation. It highlights how the somatosensory system and different molecular partners are involved in nociception and how nociception and pain sensation are studied in rodents and humans and the development of pain therapy.
Tutorial describing the basic search and navigation features of the Allen Mouse Brain Atlas
Tutorial describing the basic search and navigation features of the Allen Developing Mouse Brain Atlas
This tutorial demonstrates how to use the differential search feature of the Allen Mouse Brain Atlas to find gene markers for different regions of the brain and to visualize this gene expression in three-dimensional space. Differential search is also available for the Allen Developing Mouse Brain Atlas and the Allen Human Brain Atlas.
This module covers some basic anatomy such as the brain’s major divisions (brainstem, cerebellum, cerebrum), the cerebral lobes (frontal, temporal, parietal, and occipital), the central and peripheral nervous systems, theories of cognition, and brain orientation terms.