This tutorial was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Agah Karakuzu takes a spaghetti script written in MATLAB and turns it into understandable and reusable code living happily in a powerful GitHub repository.
Basic knowledge and comfort with Command Line Interfaces (CLI) is highly beneficial for learning how to use countless neuroscience tools and acquiring programming skills. Furthermore, CLIs are better disposed to reproducibility, automation, concatenation in pipelines, execution on multiple platforms, and remote access.
Ross Markello takes you through this general introduction to the essentials of navigating through a Bash terminal environment. The lesson is based on the Software Carpentries "Introduction to the Shell" and was given in the context of the BrainHack School 2020.
Ross Markello provides an overview of Python applications to data analysis, demonstrating why it has become ubiquitous in data science and neuroscience.
The lesson was given in the context of the BrainHack School 2020.
Tutorial describing the basic search and navigation features of the Allen Mouse Brain Atlas
Tutorial describing the basic search and navigation features of the Allen Developing Mouse Brain Atlas
This tutorial demonstrates how to use the differential search feature of the Allen Mouse Brain Atlas to find gene markers for different regions of the brain and to visualize this gene expression in three-dimensional space. Differential search is also available for the Allen Developing Mouse Brain Atlas and the Allen Human Brain Atlas.
This lecture provides an introduction to optogenetics, a biological technique to control the activity of neurons or other cell types with light.
This lecture covers visualizing extracellular neurotransmitter dynamics
Learn how to create a standard extracellular electrophysiology dataset in NWB using Python
Learn how to create a standard calcium imaging dataset in NWB using Python
Learn how to create a standard intracellular electrophysiology dataset in NWB
Learn how to create a standard intracellular electrophysiology dataset in NWB
This lecture provides an introduction to the study of eye-tracking in humans.
This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).
This lesson corresponds to slides 65-90 of the PDF below.
Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This video gives a short introduction to the EBRAINS data sharing platform, why it was developed, and how it contributes to open data sharing.
This video introduces the key principles for data organisation and explains how you could make your data FAIR for data sharing on EBRAINS.
An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.
This book was written with the goal of introducing researchers and students in a variety of research fields to the intersection of data science and neuroimaging. This book reflects our own experience of doing research at the intersection of data science and neuroimaging and it is based on our experience working with students and collaborators who come from a variety of backgrounds and have a variety of reasons for wanting to use data science approaches in their work. The tools and ideas that we chose to write about are all tools and ideas that we have used in some way in our own research. Many of them are tools that we use on a daily basis in our work. This was important to us for a few reasons: the first is that we want to teach people things that we ourselves find useful. Second, it allowed us to write the book with a focus on solving specific analysis tasks. For example, in many of the chapters you will see that we walk you through ideas while implementing them in code, and with data. We believe that this is a good way to learn about data analysis, because it provides a connecting thread from scientific questions through the data and its representation to implementing specific answers to these questions. Finally, we find these ideas compelling and fruitful. That’s why we were drawn to them in the first place. We hope that our enthusiasm about the ideas and tools described in this book will be infectious enough to convince the readers of their value.