This lesson gives an overview of the SpikeInterface package, including demonstration of data loading, preprocessing, spike sorting, and comparison of spike sorters.
In this lesson, users will learn about the NWBWidgets package, including coverage of different data types, and information for building custom widgets within this framework.
This lesson provides an introduction to modeling single neurons, as well as stability analysis of neural models.
This lesson continues a thorough description of the concepts, theories, and methods involved in the modeling of single neurons.
In this lesson you will learn about fundamental neural phenomena such as oscillations and bursting, and the effects these have on cortical networks.
This lesson continues discussing properties of neural oscillations and networks.
In this lecture, you will learn about rules governing coupled oscillators, neural synchrony in networks, and theoretical assumptions underlying current understanding.
This lesson provides a continued discussion and characterization of coupled oscillators.
This lesson gives an overview of modeling neurons based on firing rate.
This lesson characterizes the pattern generation observed in visual system hallucinations.
This lesson gives an introduction to stability analysis of neural models.
This lesson continues from the previous lectures, providing introduction to stability analysis of neural models.
In this lesson, you will learn about phenomena of neural populations such as synchrony, oscillations, and bursting.
This lesson continues from the previous lecture, giving an overview of various neural phenomena such as oscillations and bursting.
This lesson provides more context around weakly coupled oscillators.
This lesson builds upon previous lectures in this series, providing an overview of coupled oscillators.
In this lesson, you will learn about neuronal models based on their spike rate.
In this lesson, you will learn about neural activity pattern generation in visual system hallucinations.
This lesson describes the fundamentals of genomics, from central dogma to design and implementation of GWAS, to the computation, analysis, and interpretation of polygenic risk scores.
This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics.