Skip to main content

This lesson gives an introduction to stability analysis of neural models.

Difficulty level: Intermediate
Duration: 1:26:06
Speaker: : Bard Ermentrout

This lesson continues from the previous lectures, providing introduction to stability analysis of neural models.

Difficulty level: Intermediate
Duration: 1:25:38
Speaker: : Bard Ermentrout

In this lesson, you will learn about phenomena of neural populations such as synchrony, oscillations, and bursting.

Difficulty level: Intermediate
Duration: 1:24:30
Speaker: : Bard Ermentrout

This lesson continues from the previous lecture, giving an overview of various neural phenomena such as oscillations and bursting. 

Difficulty level: Intermediate
Duration: 1:31:57
Speaker: : Bard Ermentrout

This lesson provides more context around weakly coupled oscillators.

Difficulty level: Intermediate
Duration: 1:26:02
Speaker: : Bard Ermentrout

This lesson builds upon previous lectures in this series, providing an overview of coupled oscillators.

Difficulty level: Intermediate
Duration: 1:24:44
Speaker: : Bard Ermentrout

In this lesson, you will learn about neuronal models based on their spike rate. 

Difficulty level: Intermediate
Duration: 1:26:42
Speaker: : Bard Ermentrout

In this lesson, you will learn about neural activity pattern generation in visual system hallucinations.

Difficulty level: Intermediate
Duration: 1:20:42
Speaker: : Bard Ermentrout

This lecture covers computational principles that growth cones employ to detect and respond to environmental chemotactic gradients, focusing particularly on growth-cone shape dynamics.

Difficulty level: Intermediate
Duration: 26:12
Speaker: : Geoff Goodhill

In this lecture you will learn that in developing mouse somatosensory cortex, endogenous Btbd3 translocate to the cell nucleus in response to neuronal activity and oriente primary dendrites toward active axons in the barrel hollow.

Difficulty level: Intermediate
Duration: 27:32
Speaker: : Tomomi Shimogori

In this presentation, the speaker describes some of their recent efforts to characterize the transcriptome of the developing human brain, and and introduction to the BrainSpan project.

Difficulty level: Intermediate
Duration: 30:45
Speaker: : Nenad Sestan

This lesson gives an introduction to OpenWorm: an open-source project dedicated to creating a virtual C. elegans nematode in a computer.

Difficulty level: Intermediate
Duration: 23:26
Speaker: : Stephen Larson

The Open Source Brain (OSB) initiative (http://www.opensourcebrain.org) has been created to address the issues of poor accessibility, transparency, validation, and reuse of models in computational neuroscience.This lecture covers the aims of the Open Source Brain initiative, the current functionality of the website, and the range of models already available, and future plans for the project.

Difficulty level: Intermediate
Duration: 25:32
Speaker: : Padraig Gleeson

This lecture covers NeuronUnit, a library that builds upon SciUnit and integrates with several existing neuroinformatics resources to support validating single-neuron models using data gathered by neurophysiologists.

Difficulty level: Intermediate
Duration: 17:21
Speaker: : Richard Gerkin

This lesson provides an introduction to the NeuroElectro project, which aims to organize information on cellular neurophysiology.

Difficulty level: Intermediate
Duration: 17:41

In this lecture, the speaker demonstrates Neurokernel's module interfacing feature by using it to integrate independently developed models of olfactory and vision LPUs based upon experimentally obtained connectivity information.

Difficulty level: Intermediate
Duration: 29:56
Speaker: : Aurel A. Lazar

This lecture highlights the importance of correct annotation and assignment of location, and updated atlas resources to avoid errors in navigation and data interpretation.

Difficulty level: Intermediate
Duration: 22:04
Speaker: : Trygve Leergard

We are at the exciting technological stage where it has become feasible to represent the anatomy of an entire human brain at the cellular level. This lecture discusses how neuroanatomy in the 21st Century has become an effort towards the virtualization and standardization of brain tissue.

Difficulty level: Intermediate
Duration: 25:27
Speaker: : Jacopo Annese

This lecture covers essential features of digital brain models for neuroinformatics, particularly NeuroMaps. 

Difficulty level: Intermediate
Duration: 22:26
Speaker: : Douglas Bowden

This presentation covers the neuroinformatics tools and techniques used and their relationship to neuroanatomy for the Allen Institute's atlases of the mouse, developing mouse, and mouse connectional atlas.

Difficulty level: Intermediate
Duration: 23:41
Speaker: : Mike Hawrylycz