Skip to main content

This lesson covers spike-rate adaptation, the process by which a neuron's firing pattern decays to a low, steady-state frequency during the sustained encoding of a stimulus.

Difficulty level: Intermediate
Duration: 1:26

This lesson provides a brief explanation of how to implement a neuron's refractory period in a computational model.

Difficulty level: Intermediate
Duration: 0:42

In this lesson, you will learn a computational description of the process which tunes neuronal connectivity strength, spike-timing-dependent plasticity (STDP).

Difficulty level: Intermediate
Duration: 2:40

This lesson reviews theoretical and mathematical descriptions of correlated spike trains.

Difficulty level: Intermediate
Duration: 2:54

This lesson investigates the effect of correlated spike trains on spike-timing dependent plasticity (STDP).

Difficulty level: Intermediate
Duration: 1:43

This lesson goes over synaptic normalisation, the homeostatic process by which groups of weighted inputs scale up or down their biases.

Difficulty level: Intermediate
Duration: 2:58

In this lesson, you will learn about the intrinsic plasticity of single neurons.

Difficulty level: Intermediate
Duration: 2:08

This lesson covers short-term facilitation, a process whereby a neuron's synaptic transmission is enhanced for a short (sub-second) period.

Difficulty level: Intermediate
Duration: 1:58

This lesson describes short-term depression, a reduction of synaptic information transfer between neurons.

Difficulty level: Intermediate
Duration: 1:40

This lesson briefly wraps up the course on Computational Modeling of Neuronal Plasticity.

Difficulty level: Intermediate
Duration: 0:37