Skip to main content

This lecture covers advanced concepts of energy based models. The lecture is a part of the Advanced energy based models modules of the the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Energy based models I, Energy based models II, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 1:54:22
Speaker: : Yann LeCun

This lecture covers advanced concepts of energy based models. The lecture is a part of the Advanced energy based models modules of the the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Energy based models IEnergy based models II, Energy based models III, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 1:54:43
Speaker: : Yann LeCun

This lecture covers advanced concepts of energy based models. The lecture is a part of the Advanced energy based models modules of the the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Energy based models IEnergy based models IIEnergy based models III, Energy based models IV, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 2:00:28
Speaker: : Yann LeCun

This lecture covers advanced concepts of energy based models. The lecture is a part of the Associative memories modules of the the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Energy based models IEnergy based models IIEnergy based models IIIEnergy based models IV, Energy based models V, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 2:00:28
Speaker: : Yann LeCun

This lecture provides an introduction to the problem of speech recognition using neural models, emphasizing the CTC loss for training and inference when input and output sequences are of different lengths. It also covers the concept of beam search for use during inference, and how that procedure may be modeled at training time using a Graph Transformer Network. It is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: Modules 1 - 5 of this course and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 1:55:03
Speaker: : Awni Hannun

This lecture covers the concepts of the architecture and convolution of traditional convolutional neural networks, the characteristics of graph and graph convolution, and spectral graph convolutional neural networks and how to perform spectral convolution, as well as the complete spectrum of Graph Convolutional Networks (GCNs), starting with the implementation of Spectral Convolution through Spectral Networks. It then provides insights on applicability of the other convolutional definition of Template Matching to graphs, leading to Spatial networks. This lecture is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: Modules 1 - 5 of this course and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 2:00:22
Speaker: : Xavier Bresson

This lecture covers the concepts of gradient descent, stochastic gradient descent, and momentum. It is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: Models 1-7 of this course and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 1:29:05
Speaker: : Aaron DeFazio

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 5:17
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 11:37
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 5:31
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 13:48
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 12:16
Speaker: : Mike X. Cohen

In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.

Difficulty level: Intermediate
Duration: 8:51
Speaker: : Mike X. Cohen

In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.

Difficulty level: Intermediate
Duration: 12:16
Speaker: : Mike X. Cohen

In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.

Difficulty level: Intermediate
Duration: 13:39
Speaker: : Mike X. Cohen

In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.

Difficulty level: Intermediate
Duration: 12:34
Speaker: : Mike X. Cohen

In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis

Difficulty level: Intermediate
Duration: 9:10
Speaker: : Mike X. Cohen

 

In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.

Difficulty level: Intermediate
Duration: 13:23
Speaker: : Mike X. Cohen

In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.

Difficulty level: Intermediate
Duration: 12:36
Speaker: : Mike X. Cohen

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.

Difficulty level: Intermediate
Duration: 8:21
Speaker: : Mike X. Cohen