Course:

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate

Duration: 5:17

Speaker: : Mike X. Cohen

Course:

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate

Duration: 11:37

Speaker: : Mike X. Cohen

Course:

In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram.

Difficulty level: Intermediate

Duration: 5:31

Speaker: : Mike X. Cohen

Course:

Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons.

Difficulty level: Intermediate

Duration: 13:48

Speaker: : Mike X. Cohen

Course:

This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.

Difficulty level: Intermediate

Duration: 12:16

Speaker: : Mike X. Cohen

Course:

In this lesson, users are shown how to create a spatial map of neuronal orientation tuning.

Difficulty level: Intermediate

Duration: 13:11

Speaker: : Mike X. Cohen

Course:

This lesson provides an introduction to biologically detailed computational modelling of neural dynamics, including neuron membrane potential simulation and F-I curves.

Difficulty level: Intermediate

Duration: 8:21

Speaker: : Mike X. Cohen

Course:

In this lesson, users learn how to use MATLAB to build an adaptive exponential integrate and fire (AdEx) neuron model.

Difficulty level: Intermediate

Duration: 22:01

Speaker: : Mike X. Cohen

Course:

In this lesson, users learn about the practical differences between MATLAB scripts and functions, as well as how to embed their neuronal simulation into a callable function.

Difficulty level: Intermediate

Duration: 11:20

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how to generate a frequency-current (F-I) curve, which describes the function that relates the net synaptic current (I) flowing into a neuron to its firing rate (F).

Difficulty level: Intermediate

Duration: 20:39

Speaker: : Mike X. Cohen

This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics.

Difficulty level: Intermediate

Duration: 1:27:18

Speaker: : Dan Felsky

This lesson is an overview of transcriptomics, from fundamental concepts of the central dogma and RNA sequencing at the single-cell level, to how genetic expression underlies diversity in cell phenotypes.

Difficulty level: Intermediate

Duration: 1:29:08

Speaker: : Shreejoy Tripathy

Course:

This is an introductory lecture on whole-brain modelling, delving into the various spatial scales of neuroscience, neural population models, and whole-brain modelling. Additionally, the clinical applications of building and testing such models are characterized.

Difficulty level: Intermediate

Duration: 1:24:44

Speaker: : John Griffiths

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

This lesson corresponds to slides 65-90 of the PDF below.

Difficulty level: Intermediate

Duration: 1:15:04

Speaker: : Daniel Hauke

Similarity Network Fusion (SNF) is a computational method for data integration across various kinds of measurements, aimed at taking advantage of the common as well as complementary information in different data types. This workshop walks participants through running SNF on EEG and genomic data using RStudio.

Difficulty level: Intermediate

Duration: 1:21:38

Speaker: : Dan Felsky

Along the example of a patient with bi-temporal epilepsy, we show step by step how to develop a Virtual Epileptic Patient (VEP) brain model and integrate patient-specific information such as brain connectivity, epileptogenic zone and MRI lesions. The patient's brain network model is then evaluated via simulation, data fitting and mathematical analysis. This lecture demonstrates how to develop novel personalized strategies towards therapy and intervention using TVB.

Difficulty level: Intermediate

Duration: 48:57

Speaker: : Julie Courtiol

This lecture focuses on higher-level simulation scenarios using stimulation protocols. We demonstrate how to build stimulation patterns in TVB, and use them in a simulation to induced activity dissipating into experimentally known resting-state networks in human and mouse brain, a well as to obtain EEG recordings reproducing empirical findings of other researchers.

Difficulty level: Intermediate

Duration: 47:14

Speaker: : Andreas Spiegler

Tutorial on how to simulate brain tumor brains with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls. Authors: Hannelore Aerts, Michael Schirner, Ben Jeurissen, DIrk Van Roost, Eric Achten, Petra Ritter, Daniele Marinazzo

Difficulty level: Intermediate

Duration: 10:01

Speaker: :

This presentation by Dr. Michael Schirner population models and phase plane is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc... TVB is a full brain simulation platform.

Difficulty level: Intermediate

Duration: 1:10:41

Speaker: : Michael Schirner

This presentation by Dionysios Perdikis is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging. brain simulation. personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

Difficulty level: Intermediate

Duration: 36:10

Speaker: : Dionysios Perdikis

- Deep learning (14)
- Clinical neuroinformatics (13)
- Standards and Best Practices (4)
- Bayesian networks (3)
- Digital brain atlasing (1)
- Neuroimaging (22)
- EBRAINS RI (6)
- Ontologies (1)
- Standards and best practices (15)
- Tools (7)
- Clinical neuroscience (19)
- (-) General neuroscience (6)
- (-) Computational neuroscience (37)
- Statistics (3)
- Computer Science (2)
- Genomics (7)
- Data science (8)
- Open science (3)
- Neuroethics (3)