This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page.

Difficulty level: Intermediate

Duration: 12:50

Speaker: : Dan Goodman

This lesson provides a brief introduction to the *Computational Modeling of Neuronal Plasticity.*

Difficulty level: Intermediate

Duration: 0:40

Speaker: : Florence I. Kleberg

In this lesson, you will be introducted to a type of neuronal model known as the leaky integrate-and-fire (LIF) model.

Difficulty level: Intermediate

Duration: 1:23

Speaker: : Florence I. Kleberg

This lesson goes over various potential inputs to neuronal synapses, loci of neural communication.

Difficulty level: Intermediate

Duration: 1:20

Speaker: : Florence I. Kleberg

This lesson describes the how and why behind implementing integration time steps as part of a neuronal model.

Difficulty level: Intermediate

Duration: 1:08

Speaker: : Florence I. Kleberg

In this lesson, you will learn about neural spike trains which can be characterized as having a Poisson distribution.

Difficulty level: Intermediate

Duration: 1:18

Speaker: : Florence I. Kleberg

This lesson covers spike-rate adaptation, the process by which a neuron's firing pattern decays to a low, steady-state frequency during the sustained encoding of a stimulus.

Difficulty level: Intermediate

Duration: 1:26

Speaker: : Florence I. Kleberg

This lesson provides a brief explanation of how to implement a neuron's refractory period in a computational model.

Difficulty level: Intermediate

Duration: 0:42

Speaker: : Florence I. Kleberg

In this lesson, you will learn a computational description of the process which tunes neuronal connectivity strength, spike-timing-dependent plasticity (STDP).

Difficulty level: Intermediate

Duration: 2:40

Speaker: : Florence I. Kleberg

This lesson reviews theoretical and mathematical descriptions of correlated spike trains.

Difficulty level: Intermediate

Duration: 2:54

Speaker: : Florence I. Kleberg

This lesson investigates the effect of correlated spike trains on spike-timing dependent plasticity (STDP).

Difficulty level: Intermediate

Duration: 1:43

Speaker: : Florence I. Kleberg

This lesson goes over synaptic normalisation, the homeostatic process by which groups of weighted inputs scale up or down their biases.

Difficulty level: Intermediate

Duration: 2:58

Speaker: : Florence I. Kleberg

In this lesson, you will learn about the intrinsic plasticity of single neurons.

Difficulty level: Intermediate

Duration: 2:08

Speaker: : Florence I. Kleberg

This lesson covers short-term facilitation, a process whereby a neuron's synaptic transmission is enhanced for a short (sub-second) period.

Difficulty level: Intermediate

Duration: 1:58

Speaker: : Florence I. Kleberg

This lesson describes short-term depression, a reduction of synaptic information transfer between neurons.

Difficulty level: Intermediate

Duration: 1:40

Speaker: : Florence I. Kleberg

This lesson briefly wraps up the course on Computational Modeling of Neuronal Plasticity.

Difficulty level: Intermediate

Duration: 0:37

Speaker: : Florence I. Kleberg

This tutorial provides instruction on how to simulate brain tumors with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls.

Difficulty level: Intermediate

Duration: 10:01

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment.

This lesson corresponds to slides 1-64 in the PDF below.

Difficulty level: Intermediate

Duration: 1:28:14

Speaker: : Andreea Diaconescu

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

This lesson corresponds to slides 65-90 of the PDF below.

Difficulty level: Intermediate

Duration: 1:15:04

Speaker: : Daniel Hauke

Course:

This lesson describes the principles underlying functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), tractography, and parcellation. These tools and concepts are explained in a broader context of neural connectivity and mental health.

Difficulty level: Intermediate

Duration: 1:47:22

Speaker: : Erin Dickie and John Griffiths

- Bayesian networks (3)
- Clinical neuroinformatics (2)
- Standards and Best Practices (1)
- Neuroimaging (21)
- Machine learning (9)
- Neuromorphic engineering (3)
- Standards and best practices (4)
- (-) Tools (1)
- Animal models (1)
- Brain-hardware interfaces (1)
- Clinical neuroscience (1)
- General neuroscience (15)
- Computational neuroscience (27)
- Statistics (5)
- Computer Science (2)
- Genomics (8)
- Data science (2)
- (-) Open science (4)