Optimization for machine learning - Day 02 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 34:52

Speaker: : Moritz Wolter

Linear Algebra for Machine Learning - Day 03 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 57.45

Speaker: : Moritz Wolter

*Support Vector Machines* - Day 06 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 53.39

Speaker: : Elena Trunz

Decision Trees and Random Forests - Day 07 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 1:15:39

Speaker: : Elena Trunz

*Clustering and Density Estimation* - Day 08 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 59:35

Speaker: : Elena Trunz

*Dimensionality Reduction* - Day 09 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 51:02

Speaker: : Elena Trunz

*Introduction to Neural Networks *- Day 10 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 54:12

Speaker: : Moritz Wolter

Introduction to Convolutional Neural Networks* *- Day 11 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 42:07

Speaker: : Moritz Wolter

*Initialization, Optimization, and Regularization** *- Day 12 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 42:07

Speaker: : Moritz Wolter

U-Nets for medical Image-Segmentation* *- Day 13 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 16:45

Speaker: : Moritz Wolter

Sequence Processing - Day 15 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 47:45

Speaker: : Moritz Wolter

This lecture covers advanced concepts of energy-based models. The lecture is a part of the Advanced Energy-Based Models module of the the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this course include: Energy-Based Models I, Energy-Based Models II, and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 1:54:22

Speaker: : Yann LeCun

This lecture covers advanced concepts of energy-based models. The lecture is a part of the Advanced energy based models modules of the the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this course include: Energy-Based Models I, Energy-Based Models II, Energy-Based Models III, and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 1:54:43

Speaker: : Yann LeCun

This tutorial covers LV-EBM to target prop to (vanilla, denoising, contractive, variational) autoencoder and is a part of the Advanced Energy-Based Models module of the the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this course include: Energy-Based Models I, Energy-Based Models II, Energy-Based Models III, Energy-Based Models IV, and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 1:00:34

Speaker: : Alfredo Canziani

This lecture covers advanced concepts of energy-based models. The lecture is a part of the Advanced energy based models modules of the the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this course include: Energy-Based Models I, Energy-Based Models II, Energy-Based Models III, Energy-Based Models IV, and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 2:00:28

Speaker: : Yann LeCun

This tutorial covers the concepts of autoencoders, denoising encoders, and variational autoencoders (VAE) with PyTorch, as well as generative adversarial networks and code. It is a part of the Advanced energy based models modules of the the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this course include: Energy-Based Models I, Energy-Based Models II, Energy-Based Models III, Energy-Based Models IV, Energy-Based Models V, and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 1:07:50

Speaker: : Alfredo Canziani

This lecture covers advanced concepts of energy-based models. The lecture is a part of the Associative Memories module of the the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this course include: Energy-Based Models I, Energy-Based Models II, Energy-Based Models III, Energy-Based Models IV, Energy-Based Models V, and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 2:00:28

Speaker: : Yann LeCun

This tutorial covers advanced concept of energy-based models. The lecture is a part of the Associative Memories module of the the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Advanced

Duration: 1:12:00

Speaker: : Alfredo Canziani

Course:

This lecture provides an introduction to the problem of speech recognition using neural models, emphasizing the CTC loss for training and inference when input and output sequences are of different lengths. It also covers the concept of beam search for use during inference, and how that procedure may be modeled at training time using a Graph Transformer Network. It is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Modules 1 - 5 of this course and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 1:55:03

Speaker: : Awni Hannun

Course:

This lecture covers the concepts of the architecture and convolution of traditional convolutional neural networks, the characteristics of graph and graph convolution, and spectral graph convolutional neural networks and how to perform spectral convolution, as well as the complete spectrum of Graph Convolutional Networks (GCNs), starting with the implementation of Spectral Convolution through Spectral Networks. It then provides insights on applicability of the other convolutional definition of Template Matching to graphs, leading to Spatial networks. This lecture is a part of the Deep Learning Course at NYU's Center for Data Science. Prerequisites for this module include: Modules 1 - 5 of this course and an Introduction to Data Science or a Graduate Level Machine Learning course.

Difficulty level: Advanced

Duration: 2:00:22

Speaker: : Xavier Bresson

- Artificial Intelligence (1)
- Provenance (1)
- EBRAINS RI (6)
- Animal models (1)
- Brain-hardware interfaces (1)
- (-) Clinical neuroscience (20)
- (-)
General neuroscience
(16)
- General neuroinformatics (12)
- Computational neuroscience (44)
- Statistics (5)
- (-) Computer Science (4)
- (-) Genomics (8)
- Data science
(9)
- Open science (5)
- Project management (1)
- Neuroethics (3)