Course:

This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.

Difficulty level: Advanced

Duration: 50:28

Speaker: : Pierre Bellec

Course:

This lesson provides an introduction to biologically detailed computational modelling of neural dynamics, including neuron membrane potential simulation and F-I curves.

Difficulty level: Intermediate

Duration: 8:21

Speaker: : Mike X. Cohen

Course:

In this lesson, users learn how to use MATLAB to build an adaptive exponential integrate and fire (AdEx) neuron model.

Difficulty level: Intermediate

Duration: 22:01

Speaker: : Mike X. Cohen

Course:

In this lesson, users learn about the practical differences between MATLAB scripts and functions, as well as how to embed their neuronal simulation into a callable function.

Difficulty level: Intermediate

Duration: 11:20

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how to generate a frequency-current (F-I) curve, which describes the function that relates the net synaptic current (I) flowing into a neuron to its firing rate (F).

Difficulty level: Intermediate

Duration: 20:39

Speaker: : Mike X. Cohen

Course:

This lesson describes the principles underlying functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), tractography, and parcellation. These tools and concepts are explained in a broader context of neural connectivity and mental health.

Difficulty level: Intermediate

Duration: 1:47:22

Speaker: : Erin Dickie and John Griffiths

Course:

This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.

Difficulty level: Intermediate

Duration: 1:39:04

Speaker: : Erin Dickie and John Griffiths

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment.

This lesson corresponds to slides 1-64 in the PDF below.

Difficulty level: Intermediate

Duration: 1:28:14

Speaker: : Andreea Diaconescu

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

This lesson corresponds to slides 65-90 of the PDF below.

Difficulty level: Intermediate

Duration: 1:15:04

Speaker: : Daniel Hauke

This lesson briefly goes over the outline of the Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:05

Speaker: : Dan Goodman

This lesson delves into the the structure of one of the brain's most elemental computational units, the neuron, and how said structure influences computational neural network models.

Difficulty level: Intermediate

Duration: 6:33

Speaker: : Marcus Ghosh

In this lesson you will learn how machine learners and neuroscientists construct abstract computational models based on various neurophysiological signalling properties.

Difficulty level: Intermediate

Duration: 10:52

Speaker: : Dan Goodman

This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:51

Speaker: : Dan Goodman

This lesson delves into the human nervous system and the immense cellular, connectomic, and functional sophistication therein.

Difficulty level: Intermediate

Duration: 8:41

Speaker: : Marcus Ghosh

This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system.

Difficulty level: Intermediate

Duration: 4:10

Speaker: : Dan Goodman

This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page.

Difficulty level: Intermediate

Duration: 12:50

Speaker: : Dan Goodman

In this lesson, you will learn about some of the many methods to train spiking neural networks (SNNs) with either no attempt to use gradients, or only use gradients in a limited or constrained way.

Difficulty level: Intermediate

Duration: 5:14

Speaker: : Dan Goodman

In this lesson, you will learn how to train spiking neural networks (SNNs) with a surrogate gradient method.

Difficulty level: Intermediate

Duration: 11:23

Speaker: : Dan Goodman

In this lesson, you will hear about some of the open issues in the field of neuroscience, as well as a discussion about whether neuroscience works, and how can we know?

Difficulty level: Intermediate

Duration: 6:54

Speaker: : Marcus Ghosh

This tutorial provides instruction on how to simulate brain tumors with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls.

Difficulty level: Intermediate

Duration: 10:01

- Bayesian networks (3)
- Standards and Best Practices (1)
- Machine learning (20)
- Animal models (1)
- Brain-hardware interfaces (1)
- Clinical neuroscience (1)
- General neuroscience (15)
- General neuroinformatics (11)
- (-) Computational neuroscience (27)
- Statistics (5)
- (-) Computer Science (2)
- Genomics (8)
- Data science (2)
- Open science (4)