Course:

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate

Duration: 5:17

Speaker: : Mike X. Cohen

Course:

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate

Duration: 11:37

Speaker: : Mike X. Cohen

Course:

In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram.

Difficulty level: Intermediate

Duration: 5:31

Speaker: : Mike X. Cohen

Course:

Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons.

Difficulty level: Intermediate

Duration: 13:48

Speaker: : Mike X. Cohen

Course:

This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.

Difficulty level: Intermediate

Duration: 12:16

Speaker: : Mike X. Cohen

Course:

In this lesson, users are shown how to create a spatial map of neuronal orientation tuning.

Difficulty level: Intermediate

Duration: 13:11

Speaker: : Mike X. Cohen

This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics.

Difficulty level: Intermediate

Duration: 1:27:18

Speaker: : Dan Felsky

This is a tutorial on using the open-source software PRSice to calculate a set of polygenic risk scores (PRS) for a study sample. Users will also learn how to read PRS into R, visualize distributions, and perform basic association analyses.

Difficulty level: Intermediate

Duration: 1:53:34

Speaker: : Dan Felsky

This is a tutorial introducing participants to the basics of RNA-sequencing data and how to analyze its features using Seurat.

Difficulty level: Intermediate

Duration: 1:19:17

Speaker: : Sonny Chen

This tutorial demonstrates how to perform cell-type deconvolution in order to estimate how proportions of cell-types in the brain change in response to various conditions. While these techniques may be useful in addressing a wide range of scientific questions, this tutorial will focus on the cellular changes associated with major depression (MDD).

Difficulty level: Intermediate

Duration: 1:15:14

Speaker: : Keon Arbabi

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

This lesson corresponds to slides 65-90 of the PDF below.

Difficulty level: Intermediate

Duration: 1:15:04

Speaker: : Daniel Hauke

Similarity Network Fusion (SNF) is a computational method for data integration across various kinds of measurements, aimed at taking advantage of the common as well as complementary information in different data types. This workshop walks participants through running SNF on EEG and genomic data using RStudio.

Difficulty level: Intermediate

Duration: 1:21:38

Speaker: : Dan Felsky

In this third and final hands-on tutorial from the *Research Workflows for Collaborative Neuroscience *workshop, you will learn about workflow orchestration using open source tools like DataJoint and Flyte.

Difficulty level: Intermediate

Duration: 22:36

Speaker: : Daniel Xenes

Course:

This video will document the process of creating a pipeline rule for batch processing on brainlife.

Difficulty level: Intermediate

Duration: 0:57

Speaker: :

This lesson contains practical exercises which accompanies the first few lessons of the Neuroscience for Machine Learners (Neuro4ML) course.

Difficulty level: Intermediate

Duration: 5:58

Speaker: : Dan Goodman

This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:51

Speaker: : Dan Goodman

This video briefly goes over the exercises accompanying Week 6 of the Neuroscience for Machine Learners (Neuro4ML) course, *Understanding Neural Networks*.

Difficulty level: Intermediate

Duration: 2:43

Speaker: : Marcus Ghosh

This tutorial covers the fundamentals of collaborating with Git and GitHub.

Difficulty level: Intermediate

Duration: 2:15:50

Speaker: : Elizabeth DuPre

- Bayesian networks (2)
- Clinical neuroinformatics (2)
- Standards and Best Practices (1)
- Notebooks (1)
- Neuroimaging (20)
- Machine learning (4)
- Tools (7)
- Workflows (2)
- Animal models (1)
- Clinical neuroscience (1)
- (-) General neuroscience (7)
- Computational neuroscience (18)
- Statistics (3)
- (-) Computer Science (1)
- (-) Genomics (5)
- Data science (2)
- Open science (4)