This lesson briefly goes over the outline of the Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:05

Speaker: : Dan Goodman

This tutorial covers the fundamentals of collaborating with Git and GitHub.

Difficulty level: Intermediate

Duration: 2:15:50

Speaker: : Elizabeth DuPre

Course:

This lecture describes the principles of EEG electrode placement in both 2- and 3-dimensional formats.

Difficulty level: Intermediate

Duration: 12:16

Speaker: : Mike X. Cohen

Course:

This tutorial walks users through performing Fourier Transform (FFT) spectral analysis of a single EEG channel using MATLAB.

Difficulty level: Intermediate

Duration: 13:39

Speaker: : Mike X. Cohen

Course:

This tutorial builds on the previous lesson's demonstration of spectral analysis of one EEG channel. Here, users will learn how to compute and visualize spectral power from all EEG channels using MATLAB.

Difficulty level: Intermediate

Duration: 12:34

Speaker: : Mike X. Cohen

Course:

In this lesson, users will learn more about the steady-state visually evoked potential (SSEVP), as well as how to create and interpret topographical maps derived from such studies.

Difficulty level: Intermediate

Duration: 9:10

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how to extract edogenous brain waves from EEG data, specifically oscillations constrained to the 8-12 Hz frequency band, conventionally named alpha.

Difficulty level: Intermediate

Duration: 13:23

Speaker: : Mike X. Cohen

Course:

In the final lesson of this module, users will learn how to correlate endogenous alpha power with SSVEP amplitude from EEG data using MATLAB.

Difficulty level: Intermediate

Duration: 12:36

Speaker: : Mike X. Cohen

This is a continuation of the talk on the cellular mechanisms of neuronal communication, this time at the level of brain microcircuits and associated global signals like those measureable by electroencephalography (EEG). This lecture also discusses EEG biomarkers in mental health disorders, and how those cortical signatures may be simulated digitally.

Difficulty level: Intermediate

Duration: 1:11:04

Speaker: : Etay Hay

This is an in-depth guide on EEG signals and their interaction within brain microcircuits. Participants are also shown techniques and software for simulating, analyzing, and visualizing these signals.

Difficulty level: Intermediate

Duration: 1:30:41

Speaker: : Frank Mazza

Course:

In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity.

Difficulty level: Intermediate

Duration: 1:16:10

Speaker: : John Griffiths

Course:

This lesson describes the principles underlying functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), tractography, and parcellation. These tools and concepts are explained in a broader context of neural connectivity and mental health.

Difficulty level: Intermediate

Duration: 1:47:22

Speaker: : Erin Dickie and John Griffiths

Course:

This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.

Difficulty level: Intermediate

Duration: 1:39:04

Speaker: : Erin Dickie and John Griffiths

This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system.

Difficulty level: Intermediate

Duration: 4:10

Speaker: : Dan Goodman

Course:

This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks.

Difficulty level: Intermediate

Duration: 50:44

Speaker: : Caterina Gratton

Course:

This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.

Difficulty level: Advanced

Duration: 50:28

Speaker: : Pierre Bellec

Optimization for machine learning - Day 02 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 34:52

Speaker: : Moritz Wolter

Linear Algebra for Machine Learning - Day 03 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 57.45

Speaker: : Moritz Wolter

*Support Vector Machines* - Day 06 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 53.39

Speaker: : Elena Trunz

Decision Trees and Random Forests - Day 07 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 1:15:39

Speaker: : Elena Trunz

- Bayesian networks (3)
- Standards and Best Practices (2)
- Notebooks (1)
- (-) Machine learning (23)
- Animal models (1)
- Brain-hardware interfaces (1)
- Clinical neuroscience (2)
- General neuroscience (14)
- General neuroinformatics (11)
- Computational neuroscience (24)
- Statistics (5)
- (-) Computer Science (2)
- (-) Genomics (8)
- Data science (2)
- Open science (4)