This lesson describes the principles underlying functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), tractography, and parcellation. These tools and concepts are explained in a broader context of neural connectivity and mental health.
This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.
This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks.
This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.
Learn how to create a standard extracellular electrophysiology dataset in NWB using Python.
Learn how to create a standard calcium imaging dataset in NWB using Python.
In this tutorial, you will learn how to create a standard intracellular electrophysiology dataset in NWB using Python.
In this tutorial, you will learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm.
This lesson provides instructions on how to build and share extensions in NWB.
Learn how to build custom APIs for extension.
This tutorial covers how to handle writing very large data in PyNWB.
In this tutorial, users learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB.
Learn how to create a standard calcium imaging dataset in NWB using MATLAB.
Learn how to create a standard intracellular electrophysiology dataset in NWB.
This lesson provides a tutorial on how to handle writing very large data in MatNWB.
This lesson gives an overview of the Brainstorm package for analyzing extracellular electrophysiology, including preprocessing, spike sorting, trial alignment, and spectrotemporal decomposition.
This lesson provides an overview of the CaImAn package, as well as a demonstration of usage with NWB.
This lesson gives an overview of the SpikeInterface package, including demonstration of data loading, preprocessing, spike sorting, and comparison of spike sorters.
In this lesson, users will learn about the NWBWidgets package, including coverage of different data types, and information for building custom widgets within this framework.
In this lecture, you will learn about current methods, approaches, and challenges to studying human neuroanatomy, particularly through the lense of neuroimaging data such as fMRI and diffusion tensor imaging (DTI).