Skip to main content

Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

Learn how to build and share extensions in NWB

Difficulty level: Advanced
Duration: 20:29
Speaker: : Ryan Ly

Learn how to build custom APIs for extension

Difficulty level: Advanced
Duration: 25:40
Speaker: : Andrew Tritt

Learn how to handle writing very large data in PyNWB

Difficulty level: Advanced
Duration: 26:50
Speaker: : Andrew Tritt

Learn how to handle writing very large data in MatNWB

Difficulty level: Advanced
Duration: 16:18
Speaker: : Ben Dichter

Tutorial on how to simulate brain tumor brains with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls. Authors: Hannelore Aerts, Michael Schirner, Ben Jeurissen, DIrk Van Roost, Eric Achten, Petra Ritter, Daniele Marinazzo

Difficulty level: Intermediate
Duration: 10:01
Speaker: :

The tutorial comprises a didactic video and jupyter notebooks (reproducing publication: Falcon et al. 2016 eNeuro). Contributors: Daniele Marinazzo, Petra Ritter, Paul Triebkorn, Ana Solodkin

Difficulty level: Intermediate
Duration: 7:43
Speaker: :

Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 2:15:50
Speaker: : Elizabeth DuPre

This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

Learn how to create a standard extracellular electrophysiology dataset in NWB using Python

Difficulty level: Intermediate
Duration: 23:10
Speaker: : Ryan Ly

Learn how to create a standard calcium imaging dataset in NWB using Python

Difficulty level: Intermediate
Duration: 31:04
Speaker: : Ryan Ly

Learn how to create a standard intracellular electrophysiology dataset in NWB

Difficulty level: Intermediate
Duration: 20:23
Speaker: : Pamela Baker

Learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm

Difficulty level: Intermediate
Duration: 27:18
Speaker: : Oliver Ruebel

Learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB

Difficulty level: Intermediate
Duration: 45:46
Speaker: : Ben Dichter

Learn how to create a standard calcium imaging dataset in NWB using MATLAB

Difficulty level: Intermediate
Duration: 39:10
Speaker: : Ben Dichter

Learn how to create a standard intracellular electrophysiology dataset in NWB

Difficulty level: Intermediate
Duration: 20:22
Speaker: : Pamela Baker

Overview of the Braintorm package for analyzing extracellular electrophysiology, including preprocessing, spike sorting, trial alignment, and spectrotemporal decomposition

Difficulty level: Intermediate
Duration: 47:47

Overview of the CaImAn package, and demonstration of usage with NWB

Difficulty level: Intermediate
Duration: 44:37

Overview of the SpikeInterface package, including demonstration of data loading, preprocessing, spike sorting, and comparison of spike sorters

Difficulty level: Intermediate
Duration: 1:10:28
Speaker: : Alessio Buccino

Overview of the NWBWidgets package, including coverage of different data types, and information for building custom widgets within this framework

Difficulty level: Intermediate
Duration: 47:15
Speaker: : Ben Dichter