This lecture provides an introduction to the Brain Imaging Data Structure (BIDS), a standard for organizing human neuroimaging datasets.
This lesson outlines Neurodata Without Borders (NWB), a data standard for neurophysiology which provides neuroscientists with a common standard to share, archive, use, and build analysis tools for neurophysiology data.
This lecture covers the rationale for developing the DAQCORD, a framework for the design, documentation, and reporting of data curation methods in order to advance the scientific rigour, reproducibility, and analysis of data.
This tutorial demonstrates how to use PyNN, a simulator-independent language for building neuronal network models, in conjunction with the neuromorphic hardware system SpiNNaker.
In this talk the speakers will give a brief introduction of the Fenix Infrastructure and Service Offering, before focusing on Data Safety. The speaker will take the participants through the ETHZ-CSCS offering for EBRAINS and all the HBP Communities highlighting the Infrastructure role in a service implementation in respect of Security. Particular attention will be on showing what tools ETHZ-CSCS provides to a Portal/Service provider such as EBRAINS, MIP/HIP, TVB, NRP amongst others. Finally there will be given a quick glimpse into the future and the role that “multi-tenancy” will play.
This lecture gives an overview of how to prepare and preprocess neuroimaging (EEG/MEG) data for use in TVB.
This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.
This lecture focuses on ontologies for clinical neurosciences.
Learn how to create a standard extracellular electrophysiology dataset in NWB using Python.
Learn how to create a standard calcium imaging dataset in NWB using Python.
In this tutorial, you will learn how to create a standard intracellular electrophysiology dataset in NWB using Python.
In this tutorial, you will learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm.
This lesson provides instructions on how to build and share extensions in NWB.
Learn how to build custom APIs for extension.
This tutorial covers how to handle writing very large data in PyNWB.
In this tutorial, users learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB.
Learn how to create a standard calcium imaging dataset in NWB using MATLAB.
Learn how to create a standard intracellular electrophysiology dataset in NWB.
This lesson provides a tutorial on how to handle writing very large data in MatNWB.
This lesson gives an overview of the Brainstorm package for analyzing extracellular electrophysiology, including preprocessing, spike sorting, trial alignment, and spectrotemporal decomposition.