This tutorial covers the fundamentals of collaborating with Git and GitHub.
This lesson gives an introduction to the central concepts of machine learning, and how they can be applied in Python using the scikit-learn package.
This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.
This tutorial covers how to import appropriate data into The Virtual Brain, as well as how to begin constructing detailed brain models.
In this tutorial, you will learn how to run a typical TVB simulation.
This tutorial introduces The Virtual Mouse Brain (TVMB), walking users through the necessary steps for performing simulation operations on animal brain data.
In this tutorial, you will learn the necessary steps in modeling the brain of one of the most commonly studied animals among non-human primates, the macaque.
This lecture provides an introduction to entropy in general, and multi-scale entropy (MSE) in particular, highlighting the potential clinical applications of the latter.
In this lecture, you will learn about various neuroinformatic resources which allow for 3D reconstruction of brain models.
This lesson provides a brief introduction to the Computational Modeling of Neuronal Plasticity.
In this lesson, you will be introducted to a type of neuronal model known as the leaky integrate-and-fire (LIF) model.
This lesson goes over various potential inputs to neuronal synapses, loci of neural communication.
This lesson describes the how and why behind implementing integration time steps as part of a neuronal model.
In this lesson, you will learn about neural spike trains which can be characterized as having a Poisson distribution.
This lesson covers spike-rate adaptation, the process by which a neuron's firing pattern decays to a low, steady-state frequency during the sustained encoding of a stimulus.
This lesson provides a brief explanation of how to implement a neuron's refractory period in a computational model.
In this lesson, you will learn a computational description of the process which tunes neuronal connectivity strength, spike-timing-dependent plasticity (STDP).
This lesson reviews theoretical and mathematical descriptions of correlated spike trains.
This lesson investigates the effect of correlated spike trains on spike-timing dependent plasticity (STDP).
This lesson goes over synaptic normalisation, the homeostatic process by which groups of weighted inputs scale up or down their biases.