This tutorial walks participants through the application of dynamic causal modelling (DCM) to fMRI data using MATLAB. Participants are also shown various forms of DCM, how to generate and specify different models, and how to fit them to simulated neural and BOLD data.

This lesson corresponds to slides 158-187 of the PDF below.

Difficulty level: Advanced

Duration: 1:22:10

Speaker: : Peter Bedford, Povilas Karvelis

Optimization for machine learning - Day 02 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 34:52

Speaker: : Moritz Wolter

Linear Algebra for Machine Learning - Day 03 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 57.45

Speaker: : Moritz Wolter

*Support Vector Machines* - Day 06 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 53.39

Speaker: : Elena Trunz

Decision Trees and Random Forests - Day 07 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 1:15:39

Speaker: : Elena Trunz

*Clustering and Density Estimation* - Day 08 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 59:35

Speaker: : Elena Trunz

*Dimensionality Reduction* - Day 09 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 51:02

Speaker: : Elena Trunz

*Introduction to Neural Networks *- Day 10 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 54:12

Speaker: : Moritz Wolter

Introduction to Convolutional Neural Networks* *- Day 11 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 42:07

Speaker: : Moritz Wolter

*Initialization, Optimization, and Regularization** *- Day 12 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 42:07

Speaker: : Moritz Wolter

U-Nets for medical Image-Segmentation* *- Day 13 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 16:45

Speaker: : Moritz Wolter

Sequence Processing - Day 15 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 47:45

Speaker: : Moritz Wolter

This lesson gives a presentation on computationally demanding studies of synaptic plasticity on the molecular level.

Difficulty level: Advanced

Duration: 15:44

Speaker: : Kim "Avrama" Blackwell

Course:

This talk presents several computationally demanding studies of synaptic plasticity on the molecular level.

Difficulty level: Advanced

Duration: 15:44

Speaker: : Kim "Avrama" Blackwell

In this lesson you will hear about several computationally demanding studies of synaptic plasticity on the molecular level.

Difficulty level: Advanced

Duration: 15:44

Speaker: : Kim "Avrama" Blackwell

Course:

This talk covers the Human Connectome Project, which aims to provide an unparalleled compilation of neural data, an interface to graphically navigate this data, and the opportunity to achieve never before realized conclusions about the living human brain.

Difficulty level: Advanced

Duration: 59:06

Speaker: : Jennifer Elam

Course:

This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.

Difficulty level: Advanced

Duration: 50:28

Speaker: : Pierre Bellec

Course:

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate

Duration: 5:17

Speaker: : Mike X. Cohen

Course:

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate

Duration: 11:37

Speaker: : Mike X. Cohen

Course:

In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram.

Difficulty level: Intermediate

Duration: 5:31

Speaker: : Mike X. Cohen

- Artificial Intelligence (1)
- Notebooks (1)
- Provenance (1)
- DANDI archive (1)
- EBRAINS RI (6)
- Animal models (2)
- Brain-hardware interfaces (1)
- Clinical neuroscience (23)
- General neuroscience
(17)
- General neuroinformatics
(12)
- (-) Computational neuroscience (83)
- Statistics (5)
- Computer Science (5)
- Genomics (7)
- Data science
(9)
- Open science (5)
- Project management (1)
- Education (1)
- Neuroethics (5)