This is an introductory lecture on whole-brain modelling, delving into the various spatial scales of neuroscience, neural population models, and whole-brain modelling. Additionally, the clinical applications of building and testing such models are characterized.
This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).
This lesson corresponds to slides 65-90 of the PDF below.
Similarity Network Fusion (SNF) is a computational method for data integration across various kinds of measurements, aimed at taking advantage of the common as well as complementary information in different data types. This workshop walks participants through running SNF on EEG and genomic data using RStudio.
Introduction to stability analysis of neural models
Introduction to stability analysis of neural models
Oscillations and bursting
Oscillations and bursting
Weakly coupled oscillators
Continuation of coupled oscillators
Firing rate models.
Pattern generation in visual system hallucinations.
Introduction to stability analysis of neural models
Introduction to stability analysis of neural models
Weakly coupled oscillators
Continuation of coupled oscillators
Pattern generation in visual system hallucinations.
This lecture covers computational principles that growth cones employ to detect and respond to environmental chemotactic gradients, focusing particularly on growth cone shape dynamics.